Structural basis of TnsC oligomerization and transposase recruitment in type I-B CRISPR-associated transposons

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2025-03-18 DOI:10.1093/nar/gkaf149
Giada Finocchio, Irma Querques, Christelle Chanez, Katarzyna J Speichert, Martin Jinek
{"title":"Structural basis of TnsC oligomerization and transposase recruitment in type I-B CRISPR-associated transposons","authors":"Giada Finocchio, Irma Querques, Christelle Chanez, Katarzyna J Speichert, Martin Jinek","doi":"10.1093/nar/gkaf149","DOIUrl":null,"url":null,"abstract":"CRISPR-associated transposon (CAST) systems employ CRISPR–Cas systems as RNA-directed targeting modules for site-specific transposon DNA insertion. Among them, type I CASTs rely on the coordinated action of the guide RNA-bound Cascade complex and the transposon proteins TniQ, TnsC, and TnsAB. The interaction between the transposase TnsAB and the ATPase TnsC is crucial for transposition activity, yet the underlying molecular details have remained elusive. Here, we investigate the type I-B CAST system from Peltigera membranacea cyanobiont. Cryo-electron microscopic structures of TnsC and its complex with the C-terminal region of TnsAB reveal that TnsC forms a heptameric ring that recruits TnsAB by interacting with its C-terminal tail. In vitro binding assays indicate that TnsAB exclusively interacts with the TnsC heptamer without inducing its disassembly, in contrast to type V-K CAST systems. Mutational analysis of key structural features corroborates the significance of TnsC multimerization and TnsB interaction for transposon activity in vivo. Altogether, these findings offer detailed structural and functional insights into the molecular mechanism of type I-B CAST, with the aim of facilitating their development as genome engineering tools.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"91 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf149","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR-associated transposon (CAST) systems employ CRISPR–Cas systems as RNA-directed targeting modules for site-specific transposon DNA insertion. Among them, type I CASTs rely on the coordinated action of the guide RNA-bound Cascade complex and the transposon proteins TniQ, TnsC, and TnsAB. The interaction between the transposase TnsAB and the ATPase TnsC is crucial for transposition activity, yet the underlying molecular details have remained elusive. Here, we investigate the type I-B CAST system from Peltigera membranacea cyanobiont. Cryo-electron microscopic structures of TnsC and its complex with the C-terminal region of TnsAB reveal that TnsC forms a heptameric ring that recruits TnsAB by interacting with its C-terminal tail. In vitro binding assays indicate that TnsAB exclusively interacts with the TnsC heptamer without inducing its disassembly, in contrast to type V-K CAST systems. Mutational analysis of key structural features corroborates the significance of TnsC multimerization and TnsB interaction for transposon activity in vivo. Altogether, these findings offer detailed structural and functional insights into the molecular mechanism of type I-B CAST, with the aim of facilitating their development as genome engineering tools.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
Syn-tasiR-VIGS: virus-based targeted RNAi in plants by synthetic trans-acting small interfering RNAs derived from minimal precursors Genetic dissection of MutL complexes in Arabidopsis meiosis Enhanced or reversible RNA N6-methyladenosine editing by red/far-red light induction Structural basis of TnsC oligomerization and transposase recruitment in type I-B CRISPR-associated transposons Ribosome stalling-induced NIP5;1 mRNA decay triggers ARGONAUTE1-dependent transcription downregulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1