{"title":"Joint Associations of APOC3 and LDL-C–Lowering Variants With the Risk of Coronary Heart Disease","authors":"Wenxiu Wang, Rui Li, Zimin Song, Ninghao Huang, Tao Huang, Xinwei Hua, Yi-Da Tang","doi":"10.1001/jamacardio.2025.0195","DOIUrl":null,"url":null,"abstract":"ImportanceDespite substantial progress in low-density lipoprotein cholesterol (LDL-C)–lowering strategies, residual cardiovascular risk remains. Apolipoprotein C3 (APOC3) has emerged as a novel target for lowering triglycerides. Multiple clinical trials of small-interfering RNA therapeutics targeting APOC3 are currently underway.ObjectiveTo investigate whether genetically predicted lower APOC3 is associated with a reduction in cardiovascular risk and if the combined exposure to <jats:italic>APOC3</jats:italic> and LDL-C–lowering variants is associated with a reduction in the risk of coronary heart disease (CHD).Design, Setting, and ParticipantsThis was a population-based genetic association study with 2 × 2 factorial mendelian randomization. Included were participants of European ancestry in the UK Biobank. Data were analyzed from November 2023 to July 2024.ExposuresGenetic scores were constructed to mimic the effects of APOC3, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), and proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors.Main Outcomes and MeasuresPlasma lipid and lipoprotein levels, CHD, and type 2 diabetes (T2D).ResultsThis study included 401 548 UK Biobank participants (mean [SD] age, 56.9 [8.0] years; 216 901 female [54.0%]). Genetically predicted lower APOC3 was associated with a lower risk of CHD (odds ratio [OR], 0.96; 95% CI, 0.93-0.98) and T2D (0.97; 95% CI, 0.95-0.99). Genetically lower APOC3 and PCSK9 were associated with a similar magnitude of risk reduction in CHD per 10-mg/dL decrease in apolipoprotein B (ApoB) level (APOC3: 0.70; 95% CI, 0.59-0.83; PCSK9: 0.71; 95% CI, 0.65-0.77). Combined exposure to genetically lower APOC3 and PCSK9 was associated with an additive lower risk of CHD (APOC3: 0.96; 95% CI, 0.92-0.99; PCSK9: 0.93; 95% CI, 0.90-0.97; combined: 0.90; 95% CI, 0.86-0.93). Genetically lower HMGCR was also associated with a lower risk of CHD, and the risk was further reduced when combined with APOC3 (0.93; 95% CI, 0.90-0.97).Conclusions and RelevanceGenetically predicted lower APOC3 was associated with a reduced risk of CHD that is comparable with that associated with lower PCSK9 per unit decrease in ApoB. Combined exposure to <jats:italic>APOC3</jats:italic> and LDL-C–lowering variants was associated with an additive reduction in CHD risk. Future studies are warranted to investigate the therapeutic potential of these combined therapies, particularly among high-risk patients who cannot achieve therapeutic targets with existing lipid-lowering therapies.","PeriodicalId":14657,"journal":{"name":"JAMA cardiology","volume":"91 1","pages":""},"PeriodicalIF":14.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMA cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1001/jamacardio.2025.0195","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
ImportanceDespite substantial progress in low-density lipoprotein cholesterol (LDL-C)–lowering strategies, residual cardiovascular risk remains. Apolipoprotein C3 (APOC3) has emerged as a novel target for lowering triglycerides. Multiple clinical trials of small-interfering RNA therapeutics targeting APOC3 are currently underway.ObjectiveTo investigate whether genetically predicted lower APOC3 is associated with a reduction in cardiovascular risk and if the combined exposure to APOC3 and LDL-C–lowering variants is associated with a reduction in the risk of coronary heart disease (CHD).Design, Setting, and ParticipantsThis was a population-based genetic association study with 2 × 2 factorial mendelian randomization. Included were participants of European ancestry in the UK Biobank. Data were analyzed from November 2023 to July 2024.ExposuresGenetic scores were constructed to mimic the effects of APOC3, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), and proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors.Main Outcomes and MeasuresPlasma lipid and lipoprotein levels, CHD, and type 2 diabetes (T2D).ResultsThis study included 401 548 UK Biobank participants (mean [SD] age, 56.9 [8.0] years; 216 901 female [54.0%]). Genetically predicted lower APOC3 was associated with a lower risk of CHD (odds ratio [OR], 0.96; 95% CI, 0.93-0.98) and T2D (0.97; 95% CI, 0.95-0.99). Genetically lower APOC3 and PCSK9 were associated with a similar magnitude of risk reduction in CHD per 10-mg/dL decrease in apolipoprotein B (ApoB) level (APOC3: 0.70; 95% CI, 0.59-0.83; PCSK9: 0.71; 95% CI, 0.65-0.77). Combined exposure to genetically lower APOC3 and PCSK9 was associated with an additive lower risk of CHD (APOC3: 0.96; 95% CI, 0.92-0.99; PCSK9: 0.93; 95% CI, 0.90-0.97; combined: 0.90; 95% CI, 0.86-0.93). Genetically lower HMGCR was also associated with a lower risk of CHD, and the risk was further reduced when combined with APOC3 (0.93; 95% CI, 0.90-0.97).Conclusions and RelevanceGenetically predicted lower APOC3 was associated with a reduced risk of CHD that is comparable with that associated with lower PCSK9 per unit decrease in ApoB. Combined exposure to APOC3 and LDL-C–lowering variants was associated with an additive reduction in CHD risk. Future studies are warranted to investigate the therapeutic potential of these combined therapies, particularly among high-risk patients who cannot achieve therapeutic targets with existing lipid-lowering therapies.
JAMA cardiologyMedicine-Cardiology and Cardiovascular Medicine
CiteScore
45.80
自引率
1.70%
发文量
264
期刊介绍:
JAMA Cardiology, an international peer-reviewed journal, serves as the premier publication for clinical investigators, clinicians, and trainees in cardiovascular medicine worldwide. As a member of the JAMA Network, it aligns with a consortium of peer-reviewed general medical and specialty publications.
Published online weekly, every Wednesday, and in 12 print/online issues annually, JAMA Cardiology attracts over 4.3 million annual article views and downloads. Research articles become freely accessible online 12 months post-publication without any author fees. Moreover, the online version is readily accessible to institutions in developing countries through the World Health Organization's HINARI program.
Positioned at the intersection of clinical investigation, actionable clinical science, and clinical practice, JAMA Cardiology prioritizes traditional and evolving cardiovascular medicine, alongside evidence-based health policy. It places particular emphasis on health equity, especially when grounded in original science, as a top editorial priority.