Unveiling ECRAM switching mechanisms using variable temperature Hall measurements for accelerated AI computation

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-03-19 DOI:10.1038/s41467-025-58004-0
Hyunjeong Kwak, Junyoung Choi, Seungmin Han, Eun Ho Kim, Chaeyoun Kim, Paul Solomon, Junyong Lee, Doyoon Kim, Byungha Shin, Donghwa Lee, Oki Gunawan, Seyoung Kim
{"title":"Unveiling ECRAM switching mechanisms using variable temperature Hall measurements for accelerated AI computation","authors":"Hyunjeong Kwak, Junyoung Choi, Seungmin Han, Eun Ho Kim, Chaeyoun Kim, Paul Solomon, Junyong Lee, Doyoon Kim, Byungha Shin, Donghwa Lee, Oki Gunawan, Seyoung Kim","doi":"10.1038/s41467-025-58004-0","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical random-access memory devices are promising for analog cross-point array-based artificial intelligence accelerators due to their high stability and programmability. However, understanding their switching mechanism is challenging due to complex multilayer structures and the high resistivity of oxide materials. Here, we fabricate multi-terminal Hall-bar devices and conduct alternating current magnetic parallel dipole line Hall measurements to extract transport parameters. Through variable-temperature Hall measurements, we determine the oxygen donor level at approximately 0.1 eV in tungsten oxide and reveal that conductance potentiation even at low temperatures results from increased mobility and carrier density. This behavior is linked to reversible electronic and atomic structure changes, supported by density functional theory calculations. Our findings enhance the understanding of electrochemical random-access memory switching mechanisms and provide insights for improving high-performance, energy-efficient artificial intelligence computation in analog hardware.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"25 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58004-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical random-access memory devices are promising for analog cross-point array-based artificial intelligence accelerators due to their high stability and programmability. However, understanding their switching mechanism is challenging due to complex multilayer structures and the high resistivity of oxide materials. Here, we fabricate multi-terminal Hall-bar devices and conduct alternating current magnetic parallel dipole line Hall measurements to extract transport parameters. Through variable-temperature Hall measurements, we determine the oxygen donor level at approximately 0.1 eV in tungsten oxide and reveal that conductance potentiation even at low temperatures results from increased mobility and carrier density. This behavior is linked to reversible electronic and atomic structure changes, supported by density functional theory calculations. Our findings enhance the understanding of electrochemical random-access memory switching mechanisms and provide insights for improving high-performance, energy-efficient artificial intelligence computation in analog hardware.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Designable excitonic effects in van der Waals artificial crystals with exponentially growing thickness Molecularly distinct striatonigral neuron subtypes differentially regulate locomotion Recapitulating hypoxic metabolism in cartilaginous organoids via adaptive cell-matrix interactions enhances histone lactylation and cartilage regeneration Predicting driving comfort in autonomous vehicles using road information and multi-head attention models Unveiling ECRAM switching mechanisms using variable temperature Hall measurements for accelerated AI computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1