Gliadin hydrolysates nanoparticles improve the bioavailability and antioxidant activity of berberine

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Food Chemistry Pub Date : 2025-03-19 DOI:10.1016/j.foodchem.2025.143934
Xiaoxiao Li, Jihong Huang, Rui Tan
{"title":"Gliadin hydrolysates nanoparticles improve the bioavailability and antioxidant activity of berberine","authors":"Xiaoxiao Li, Jihong Huang, Rui Tan","doi":"10.1016/j.foodchem.2025.143934","DOIUrl":null,"url":null,"abstract":"Berberine (BBR) is an alkaloid with multiple physiological activities, but its low bioavailability limits its effectiveness in vivo. This study developed soluble nano delivery carriers using gliadin hydrolysates (GLH) to enhance BBR's bioavailability. The research evaluated the encapsulation efficiency, stability, release characteristics, and antioxidant capacities of GLH-BBR nanoparticles (GLH-BBR NPs) both in vitro and in vivo. Results showed that at a 5:1 GLH-to-BBR mass ratio, the encapsulation efficiency reached 74.95 %. GLH-BBR NPs increased DPPH radical scavenging from 19.19 % to 40.28 % and ABTS radical scavenging from 4.26 % to 60.96 %, compared to BBR alone. In vitro tests showed that GLH-BBR NPs inhibited BBR release during gastric digestion and promoted sustained release in the intestine. In addition, GLH-BBR NPs enhanced BBR's bioavailability and in vivo antioxidant activity. These findings support the development of sustainable peptide byproducts for high-quality delivery platforms.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"89 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.143934","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Berberine (BBR) is an alkaloid with multiple physiological activities, but its low bioavailability limits its effectiveness in vivo. This study developed soluble nano delivery carriers using gliadin hydrolysates (GLH) to enhance BBR's bioavailability. The research evaluated the encapsulation efficiency, stability, release characteristics, and antioxidant capacities of GLH-BBR nanoparticles (GLH-BBR NPs) both in vitro and in vivo. Results showed that at a 5:1 GLH-to-BBR mass ratio, the encapsulation efficiency reached 74.95 %. GLH-BBR NPs increased DPPH radical scavenging from 19.19 % to 40.28 % and ABTS radical scavenging from 4.26 % to 60.96 %, compared to BBR alone. In vitro tests showed that GLH-BBR NPs inhibited BBR release during gastric digestion and promoted sustained release in the intestine. In addition, GLH-BBR NPs enhanced BBR's bioavailability and in vivo antioxidant activity. These findings support the development of sustainable peptide byproducts for high-quality delivery platforms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
期刊最新文献
Influence of plant-based gel binders and song-hwa mushroom crosslinking on functional properties and consumer perception of vegan mushroom sausage analogues Metabolome reveal high nitrogen supply decrease the antioxidant capacity of blue honeysuckle (Lonicera caerulea L.) by regulating flavonoids Sensory wheel construction and key flavor compounds characterization of black tea milk tea beverages Gliadin hydrolysates nanoparticles improve the bioavailability and antioxidant activity of berberine Simultaneous combination of subcritical water extraction and enzyme-assisted extraction for protein recovery from lime peels. Characterization of protein hydrolysates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1