{"title":"Gliadin hydrolysates nanoparticles improve the bioavailability and antioxidant activity of berberine","authors":"Xiaoxiao Li, Jihong Huang, Rui Tan","doi":"10.1016/j.foodchem.2025.143934","DOIUrl":null,"url":null,"abstract":"Berberine (BBR) is an alkaloid with multiple physiological activities, but its low bioavailability limits its effectiveness in vivo. This study developed soluble nano delivery carriers using gliadin hydrolysates (GLH) to enhance BBR's bioavailability. The research evaluated the encapsulation efficiency, stability, release characteristics, and antioxidant capacities of GLH-BBR nanoparticles (GLH-BBR NPs) both in vitro and in vivo. Results showed that at a 5:1 GLH-to-BBR mass ratio, the encapsulation efficiency reached 74.95 %. GLH-BBR NPs increased DPPH radical scavenging from 19.19 % to 40.28 % and ABTS radical scavenging from 4.26 % to 60.96 %, compared to BBR alone. In vitro tests showed that GLH-BBR NPs inhibited BBR release during gastric digestion and promoted sustained release in the intestine. In addition, GLH-BBR NPs enhanced BBR's bioavailability and in vivo antioxidant activity. These findings support the development of sustainable peptide byproducts for high-quality delivery platforms.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"89 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.143934","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Berberine (BBR) is an alkaloid with multiple physiological activities, but its low bioavailability limits its effectiveness in vivo. This study developed soluble nano delivery carriers using gliadin hydrolysates (GLH) to enhance BBR's bioavailability. The research evaluated the encapsulation efficiency, stability, release characteristics, and antioxidant capacities of GLH-BBR nanoparticles (GLH-BBR NPs) both in vitro and in vivo. Results showed that at a 5:1 GLH-to-BBR mass ratio, the encapsulation efficiency reached 74.95 %. GLH-BBR NPs increased DPPH radical scavenging from 19.19 % to 40.28 % and ABTS radical scavenging from 4.26 % to 60.96 %, compared to BBR alone. In vitro tests showed that GLH-BBR NPs inhibited BBR release during gastric digestion and promoted sustained release in the intestine. In addition, GLH-BBR NPs enhanced BBR's bioavailability and in vivo antioxidant activity. These findings support the development of sustainable peptide byproducts for high-quality delivery platforms.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.