Peter Boyle, Felix Erben, Vera Gülpers, Maxwell T. Hansen, Fabian Joswig, Michael Marshall, Nelson Pitanga Lachini, Antonin Portelli
{"title":"Physical-mass calculation of ρ(770) and K*(892) resonance parameters via ππ and Kπ scattering amplitudes from lattice QCD","authors":"Peter Boyle, Felix Erben, Vera Gülpers, Maxwell T. Hansen, Fabian Joswig, Michael Marshall, Nelson Pitanga Lachini, Antonin Portelli","doi":"10.1103/physrevd.111.054510","DOIUrl":null,"url":null,"abstract":"We present our study of the ρ</a:mi>(</a:mo>770</a:mn>)</a:mo></a:math> and <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msup><e:mi>K</e:mi><e:mo>*</e:mo></e:msup><e:mo stretchy=\"false\">(</e:mo><e:mn>892</e:mn><e:mo stretchy=\"false\">)</e:mo></e:math> resonances from lattice quantum chromodynamics (QCD) employing domain-wall fermions at physical quark masses. We determine the finite-volume energy spectrum in various momentum frames and obtain phase-shift parametrizations via the Lüscher formalism and as a final step the complex resonance poles of the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>π</i:mi><i:mi>π</i:mi></i:math> and <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>K</k:mi><k:mi>π</k:mi></k:math> elastic scattering amplitudes via an analytical continuation of the models. By sampling a large number of representative sets of underlying energy-level fits, we also assign a systematic uncertainty to our final results. This is a significant extension to data-driven analysis methods that have been used in lattice QCD to date, due to the two-step nature of the formalism. Our final pole positions, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>M</m:mi><m:mo>+</m:mo><m:mi>i</m:mi><m:mi mathvariant=\"normal\">Γ</m:mi><m:mo>/</m:mo><m:mn>2</m:mn></m:math>, with all statistical and systematic errors exposed, are <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mrow><p:msub><p:mrow><p:mi>M</p:mi></p:mrow><p:mrow><p:msup><p:mrow><p:mi>K</p:mi></p:mrow><p:mrow><p:mo>*</p:mo></p:mrow></p:msup></p:mrow></p:msub><p:mo>=</p:mo><p:mn>893</p:mn><p:mo stretchy=\"false\">(</p:mo><p:mn>2</p:mn><p:mo stretchy=\"false\">)</p:mo><p:mo stretchy=\"false\">(</p:mo><p:mn>8</p:mn><p:mo stretchy=\"false\">)</p:mo><p:mo stretchy=\"false\">(</p:mo><p:mn>54</p:mn><p:mo stretchy=\"false\">)</p:mo><p:mo stretchy=\"false\">(</p:mo><p:mn>2</p:mn><p:mo stretchy=\"false\">)</p:mo><p:mtext> </p:mtext><p:mtext> </p:mtext><p:mi>MeV</p:mi></p:mrow></p:math> and <z:math xmlns:z=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><z:msub><z:mi mathvariant=\"normal\">Γ</z:mi><z:msup><z:mi>K</z:mi><z:mo>*</z:mo></z:msup></z:msub><z:mo>=</z:mo><z:mn>51</z:mn><z:mo stretchy=\"false\">(</z:mo><z:mn>2</z:mn><z:mo stretchy=\"false\">)</z:mo><z:mo stretchy=\"false\">(</z:mo><z:mn>11</z:mn><z:mo stretchy=\"false\">)</z:mo><z:mo stretchy=\"false\">(</z:mo><z:mn>3</z:mn><z:mo stretchy=\"false\">)</z:mo><z:mo stretchy=\"false\">(</z:mo><z:mn>0</z:mn><z:mo stretchy=\"false\">)</z:mo><z:mtext> </z:mtext><z:mtext> </z:mtext><z:mi>MeV</z:mi></z:math> for the <kb:math xmlns:kb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kb:msup><kb:mi>K</kb:mi><kb:mo>*</kb:mo></kb:msup><kb:mo stretchy=\"false\">(</kb:mo><kb:mn>892</kb:mn><kb:mo stretchy=\"false\">)</kb:mo></kb:math> resonance and <ob:math xmlns:ob=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ob:mrow><ob:msub><ob:mrow><ob:mi>M</ob:mi></ob:mrow><ob:mrow><ob:mi>ρ</ob:mi></ob:mrow></ob:msub><ob:mo>=</ob:mo><ob:mn>796</ob:mn><ob:mo stretchy=\"false\">(</ob:mo><ob:mn>5</ob:mn><ob:mo stretchy=\"false\">)</ob:mo><ob:mo stretchy=\"false\">(</ob:mo><ob:mn>15</ob:mn><ob:mo stretchy=\"false\">)</ob:mo><ob:mo stretchy=\"false\">(</ob:mo><ob:mn>48</ob:mn><ob:mo stretchy=\"false\">)</ob:mo><ob:mo stretchy=\"false\">(</ob:mo><ob:mn>2</ob:mn><ob:mo stretchy=\"false\">)</ob:mo><ob:mtext> </ob:mtext><ob:mtext> </ob:mtext><ob:mi>MeV</ob:mi></ob:mrow></ob:math> and <yb:math xmlns:yb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><yb:msub><yb:mi mathvariant=\"normal\">Γ</yb:mi><yb:mi>ρ</yb:mi></yb:msub><yb:mo>=</yb:mo><yb:mn>192</yb:mn><yb:mo stretchy=\"false\">(</yb:mo><yb:mn>10</yb:mn><yb:mo stretchy=\"false\">)</yb:mo><yb:mo stretchy=\"false\">(</yb:mo><yb:mn>28</yb:mn><yb:mo stretchy=\"false\">)</yb:mo><yb:mo stretchy=\"false\">(</yb:mo><yb:mn>12</yb:mn><yb:mo stretchy=\"false\">)</yb:mo><yb:mo stretchy=\"false\">(</yb:mo><yb:mn>0</yb:mn><yb:mo stretchy=\"false\">)</yb:mo><yb:mtext> </yb:mtext><yb:mtext> </yb:mtext><yb:mi>MeV</yb:mi></yb:math> for the <jc:math xmlns:jc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><jc:mi>ρ</jc:mi><jc:mo stretchy=\"false\">(</jc:mo><jc:mn>770</jc:mn><jc:mo stretchy=\"false\">)</jc:mo></jc:math> resonance. The four differently grouped sources of uncertainties are, in the order of occurrence: statistical, data-driven systematic, an estimation of systematic effects beyond our computation (dominated by the fact that we employ a single lattice spacing), and the error from the scale-setting uncertainty on our ensemble. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"44 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.054510","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We present our study of the ρ(770) and K*(892) resonances from lattice quantum chromodynamics (QCD) employing domain-wall fermions at physical quark masses. We determine the finite-volume energy spectrum in various momentum frames and obtain phase-shift parametrizations via the Lüscher formalism and as a final step the complex resonance poles of the ππ and Kπ elastic scattering amplitudes via an analytical continuation of the models. By sampling a large number of representative sets of underlying energy-level fits, we also assign a systematic uncertainty to our final results. This is a significant extension to data-driven analysis methods that have been used in lattice QCD to date, due to the two-step nature of the formalism. Our final pole positions, M+iΓ/2, with all statistical and systematic errors exposed, are MK*=893(2)(8)(54)(2)MeV and ΓK*=51(2)(11)(3)(0)MeV for the K*(892) resonance and Mρ=796(5)(15)(48)(2)MeV and Γρ=192(10)(28)(12)(0)MeV for the ρ(770) resonance. The four differently grouped sources of uncertainties are, in the order of occurrence: statistical, data-driven systematic, an estimation of systematic effects beyond our computation (dominated by the fact that we employ a single lattice spacing), and the error from the scale-setting uncertainty on our ensemble. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.