A. Alshemi, E. M. Forgan, A. Hiess, R. Cubitt, J. S. White, K. Schmalzl, E. Blackburn
{"title":"Two Characteristic Contributions to the Superconducting State of 2H−NbSe2","authors":"A. Alshemi, E. M. Forgan, A. Hiess, R. Cubitt, J. S. White, K. Schmalzl, E. Blackburn","doi":"10.1103/physrevlett.134.116001","DOIUrl":null,"url":null,"abstract":"Multiband superconductivity arises when multiple electronic bands contribute to the formation of the superconducting state, allowing distinct pairing interactions and gap structures. Here, we present field- and temperature-dependent data on the vortex lattice structure in 2</a:mn>H</a:mi>−</a:mtext>NbSe</a:mtext></a:mrow>2</a:mn></a:mrow></a:msub></a:mrow></a:math> as a contribution to the ongoing debate as to whether the defining feature of the superconductivity is the anisotropy or the multiband nature. The field-dependent data clearly show that there are two distinct superconducting bands, and the contribution of one of them to the vortex lattice signal is completely suppressed for magnetic fields above <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mo>∼</c:mo><c:mn>0.8</c:mn><c:mtext> </c:mtext><c:mtext> </c:mtext><c:mi mathvariant=\"normal\">T</c:mi></c:math>, well below <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:msub><f:mrow><f:mi>B</f:mi></f:mrow><f:mrow><f:mi mathvariant=\"normal\">c</f:mi><f:mn>2</f:mn></f:mrow></f:msub></f:math>. By combining the temperature and field scans, we can deduce that there is a moderate degree of interband coupling. From the observed temperature dependences, we find that at low field and zero temperature, the two gaps in temperature units are <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mn>13.1</i:mn><i:mo>±</i:mo><i:mn>0.2</i:mn></i:math> and <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mn>6.5</k:mn><k:mo>±</k:mo><k:mn>0.3</k:mn><k:mtext> </k:mtext><k:mtext> </k:mtext><k:mi mathvariant=\"normal\">K</k:mi></k:math> (<n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:msub><n:mi mathvariant=\"normal\">Δ</n:mi><n:mn>0</n:mn></n:msub><n:mo>=</n:mo><n:mn>1.88</n:mn></n:math> and 0.94 <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mrow><q:msub><q:mrow><q:mi>k</q:mi></q:mrow><q:mrow><q:mi mathvariant=\"normal\">B</q:mi></q:mrow></q:msub><q:msub><q:mrow><q:mi>T</q:mi></q:mrow><q:mrow><q:mi mathvariant=\"normal\">c</q:mi></q:mrow></q:msub></q:mrow></q:math>); the band with the larger gap gives just under two-thirds of the superfluid density. The penetration depth extrapolated to zero field and zero temperature is <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mn>160</u:mn><u:mo>±</u:mo><u:mn>2</u:mn><u:mtext> </u:mtext><u:mtext> </u:mtext><u:mi>nm</u:mi></u:math>. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"24 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.116001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiband superconductivity arises when multiple electronic bands contribute to the formation of the superconducting state, allowing distinct pairing interactions and gap structures. Here, we present field- and temperature-dependent data on the vortex lattice structure in 2H−NbSe2 as a contribution to the ongoing debate as to whether the defining feature of the superconductivity is the anisotropy or the multiband nature. The field-dependent data clearly show that there are two distinct superconducting bands, and the contribution of one of them to the vortex lattice signal is completely suppressed for magnetic fields above ∼0.8T, well below Bc2. By combining the temperature and field scans, we can deduce that there is a moderate degree of interband coupling. From the observed temperature dependences, we find that at low field and zero temperature, the two gaps in temperature units are 13.1±0.2 and 6.5±0.3K (Δ0=1.88 and 0.94 kBTc); the band with the larger gap gives just under two-thirds of the superfluid density. The penetration depth extrapolated to zero field and zero temperature is 160±2nm. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks