Jiaming Liang, Junhui Shi, Ailong Song, Meihua Lu, Kairan Zhang, Meng Xu, Gaoxingyu Huang, Peilong Lu, Xudong Wu, Dan Ma
{"title":"Structures and mechanism of human mitochondrial pyruvate carrier","authors":"Jiaming Liang, Junhui Shi, Ailong Song, Meihua Lu, Kairan Zhang, Meng Xu, Gaoxingyu Huang, Peilong Lu, Xudong Wu, Dan Ma","doi":"10.1038/s41586-025-08873-8","DOIUrl":null,"url":null,"abstract":"<p>Mitochondrial pyruvate carrier (MPC) is a mitochondrial inner membrane protein complex essential for uptake of pyruvate into matrix as the primary carbon source for tricarboxylic acid (TCA) cycle<sup>1,2</sup>. Here, we report six cryo-EM structures of human MPC in three different states: three structures obtained at different conditions in intermembrane space (IMS)-open state with highest resolution of 3.2 Å, a structure of pyruvate-treated MPC in occluded state at 3.7 Å, and two structures in matrix-facing state bound with the inhibitor UK5099 or an inhibitory nanobody on the matrix side at 3.2 Å and 3.0 Å, respectively. MPC is assigned into a heterodimer consisting of MPC1 and MPC2, with the transmembrane domain adopting pseudo-C2-symmetry. Approximate rigid body movements occur between the IMS-open state and the occluded state, while structural changes primarily on the matrix side facilitate the transition between the occluded state and the matrix-facing state, revealing the alternating access mechanism during pyruvate transport. In the UK5099-bound structure, the inhibitor fits well and interacts extensively with a pocket that opens to the matrix side. Our findings provide important insights into the mechanisms underlying MPC-mediated substrate transport, and the recognition and inhibition by UK5099, which will facilitate future drug development targeting MPC.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"44 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08873-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial pyruvate carrier (MPC) is a mitochondrial inner membrane protein complex essential for uptake of pyruvate into matrix as the primary carbon source for tricarboxylic acid (TCA) cycle1,2. Here, we report six cryo-EM structures of human MPC in three different states: three structures obtained at different conditions in intermembrane space (IMS)-open state with highest resolution of 3.2 Å, a structure of pyruvate-treated MPC in occluded state at 3.7 Å, and two structures in matrix-facing state bound with the inhibitor UK5099 or an inhibitory nanobody on the matrix side at 3.2 Å and 3.0 Å, respectively. MPC is assigned into a heterodimer consisting of MPC1 and MPC2, with the transmembrane domain adopting pseudo-C2-symmetry. Approximate rigid body movements occur between the IMS-open state and the occluded state, while structural changes primarily on the matrix side facilitate the transition between the occluded state and the matrix-facing state, revealing the alternating access mechanism during pyruvate transport. In the UK5099-bound structure, the inhibitor fits well and interacts extensively with a pocket that opens to the matrix side. Our findings provide important insights into the mechanisms underlying MPC-mediated substrate transport, and the recognition and inhibition by UK5099, which will facilitate future drug development targeting MPC.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.