Sulfate-reducing capability of nitrate-dependent anaerobic gaseous alkanes degrader

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2025-03-18 DOI:10.1016/j.watres.2025.123507
Xiawei Liu, Zhiguo Yuan, Mengxiong Wu, Jianhua Guo
{"title":"Sulfate-reducing capability of nitrate-dependent anaerobic gaseous alkanes degrader","authors":"Xiawei Liu, Zhiguo Yuan, Mengxiong Wu, Jianhua Guo","doi":"10.1016/j.watres.2025.123507","DOIUrl":null,"url":null,"abstract":"Microbial oxidation of short-chain gaseous alkanes (SCGAs, including ethane, propane and butane) are important sinks to mitigate the emission of SCGAs to the atmosphere. ‘<em>Candidatus</em> Alkanivorans nitratireducens’ has been discovered to be capable of utilizing nitrate as an electron acceptor to anaerobically oxidize these SCGAs. However, little is known about its metabolic diversity in sulfate reduction, despite sulfate being widely present in both marine and freshwater ecosystems. Here, we show that sulfate can be reduced by ‘<em>Ca.</em> A. nitratireducens’ and as an alternative electron acceptor. Genomic analysis confirmed that the genome of ‘<em>Ca.</em> A. nitratireducens’ harbour genes involved in sulfate reduction. Short-term incubation of the enriched ‘<em>Ca.</em> A. nitratireducens’ showed immediate consumption of propane and sulfate, suggesting the capability of ‘<em>Ca.</em> A. nitratireducens’ to utilize sulfate as an electron acceptor. Long-term incubation further confirmed its ability to utilize sulfate. However, propane oxidation rates and sulfate reduction rates gradually decreased during the long-term incubation, accompanied by the decrease of relative abundance of ‘<em>Ca.</em> A. nitratireducens’. After the long-term adaptation with sulfate as the sole acceptor, both anaerobic propane oxidation and nitrate reduction capability of ‘<em>Ca.</em> A. nitratireducens’ can be partly recovered by switching the electron acceptor back from sulfate to nitrate. Overall, this study indicates sulfate can be utilized but is not the preferred electron acceptor for ‘<em>Ca.</em> A. nitratireducens’. The findings deepen our understanding on the metabolic flexibility of ‘<em>Ca.</em> A. nitratireducens’.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"12 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123507","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial oxidation of short-chain gaseous alkanes (SCGAs, including ethane, propane and butane) are important sinks to mitigate the emission of SCGAs to the atmosphere. ‘Candidatus Alkanivorans nitratireducens’ has been discovered to be capable of utilizing nitrate as an electron acceptor to anaerobically oxidize these SCGAs. However, little is known about its metabolic diversity in sulfate reduction, despite sulfate being widely present in both marine and freshwater ecosystems. Here, we show that sulfate can be reduced by ‘Ca. A. nitratireducens’ and as an alternative electron acceptor. Genomic analysis confirmed that the genome of ‘Ca. A. nitratireducens’ harbour genes involved in sulfate reduction. Short-term incubation of the enriched ‘Ca. A. nitratireducens’ showed immediate consumption of propane and sulfate, suggesting the capability of ‘Ca. A. nitratireducens’ to utilize sulfate as an electron acceptor. Long-term incubation further confirmed its ability to utilize sulfate. However, propane oxidation rates and sulfate reduction rates gradually decreased during the long-term incubation, accompanied by the decrease of relative abundance of ‘Ca. A. nitratireducens’. After the long-term adaptation with sulfate as the sole acceptor, both anaerobic propane oxidation and nitrate reduction capability of ‘Ca. A. nitratireducens’ can be partly recovered by switching the electron acceptor back from sulfate to nitrate. Overall, this study indicates sulfate can be utilized but is not the preferred electron acceptor for ‘Ca. A. nitratireducens’. The findings deepen our understanding on the metabolic flexibility of ‘Ca. A. nitratireducens’.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
A novel magnetic adsorption and capacitive deionization coupled technology for industrial saline wastewater recycling Visualization of MC-LR in lakes using near-infrared technology Silico-oxygen bonding integrated with nano-size pore enrichment enables sustainable low-oxidant-consumption Fenton-like chemistry Nutrient enrichment by high aquaculture effluent input exacerbates imbalances between methane production and oxidation in mangrove sediments Anthropogenic imprint on riverine plasmidome diversity and proliferation of antibiotic resistance genes following pollution and urbanization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1