{"title":"Sulfate-reducing capability of nitrate-dependent anaerobic gaseous alkanes degrader","authors":"Xiawei Liu, Zhiguo Yuan, Mengxiong Wu, Jianhua Guo","doi":"10.1016/j.watres.2025.123507","DOIUrl":null,"url":null,"abstract":"Microbial oxidation of short-chain gaseous alkanes (SCGAs, including ethane, propane and butane) are important sinks to mitigate the emission of SCGAs to the atmosphere. ‘<em>Candidatus</em> Alkanivorans nitratireducens’ has been discovered to be capable of utilizing nitrate as an electron acceptor to anaerobically oxidize these SCGAs. However, little is known about its metabolic diversity in sulfate reduction, despite sulfate being widely present in both marine and freshwater ecosystems. Here, we show that sulfate can be reduced by ‘<em>Ca.</em> A. nitratireducens’ and as an alternative electron acceptor. Genomic analysis confirmed that the genome of ‘<em>Ca.</em> A. nitratireducens’ harbour genes involved in sulfate reduction. Short-term incubation of the enriched ‘<em>Ca.</em> A. nitratireducens’ showed immediate consumption of propane and sulfate, suggesting the capability of ‘<em>Ca.</em> A. nitratireducens’ to utilize sulfate as an electron acceptor. Long-term incubation further confirmed its ability to utilize sulfate. However, propane oxidation rates and sulfate reduction rates gradually decreased during the long-term incubation, accompanied by the decrease of relative abundance of ‘<em>Ca.</em> A. nitratireducens’. After the long-term adaptation with sulfate as the sole acceptor, both anaerobic propane oxidation and nitrate reduction capability of ‘<em>Ca.</em> A. nitratireducens’ can be partly recovered by switching the electron acceptor back from sulfate to nitrate. Overall, this study indicates sulfate can be utilized but is not the preferred electron acceptor for ‘<em>Ca.</em> A. nitratireducens’. The findings deepen our understanding on the metabolic flexibility of ‘<em>Ca.</em> A. nitratireducens’.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"12 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123507","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial oxidation of short-chain gaseous alkanes (SCGAs, including ethane, propane and butane) are important sinks to mitigate the emission of SCGAs to the atmosphere. ‘Candidatus Alkanivorans nitratireducens’ has been discovered to be capable of utilizing nitrate as an electron acceptor to anaerobically oxidize these SCGAs. However, little is known about its metabolic diversity in sulfate reduction, despite sulfate being widely present in both marine and freshwater ecosystems. Here, we show that sulfate can be reduced by ‘Ca. A. nitratireducens’ and as an alternative electron acceptor. Genomic analysis confirmed that the genome of ‘Ca. A. nitratireducens’ harbour genes involved in sulfate reduction. Short-term incubation of the enriched ‘Ca. A. nitratireducens’ showed immediate consumption of propane and sulfate, suggesting the capability of ‘Ca. A. nitratireducens’ to utilize sulfate as an electron acceptor. Long-term incubation further confirmed its ability to utilize sulfate. However, propane oxidation rates and sulfate reduction rates gradually decreased during the long-term incubation, accompanied by the decrease of relative abundance of ‘Ca. A. nitratireducens’. After the long-term adaptation with sulfate as the sole acceptor, both anaerobic propane oxidation and nitrate reduction capability of ‘Ca. A. nitratireducens’ can be partly recovered by switching the electron acceptor back from sulfate to nitrate. Overall, this study indicates sulfate can be utilized but is not the preferred electron acceptor for ‘Ca. A. nitratireducens’. The findings deepen our understanding on the metabolic flexibility of ‘Ca. A. nitratireducens’.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.