Millimeter-Wave MIMO Transmission for FBMC Systems With Lens Antenna Arrays

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2025-03-04 DOI:10.1109/LSP.2025.3547268
Ying Wang;Qiang Guo;Jianhong Xiang;Yu Zhong
{"title":"Millimeter-Wave MIMO Transmission for FBMC Systems With Lens Antenna Arrays","authors":"Ying Wang;Qiang Guo;Jianhong Xiang;Yu Zhong","doi":"10.1109/LSP.2025.3547268","DOIUrl":null,"url":null,"abstract":"Millimeterwave (mmWave) techniques will be a key enabler for wireless communications to achieve high data rates. Additionally, Filter Bank Multi-Carrier (FBMC) with good spectral properties has also been regarded as an important transmission technique for future wireless communications. In this letter, we design and analyze an FBMC-based mmWave Multiple-input Multiple-output (MIMO) system. Specifically, we first pre-code quadrature amplitude modulation symbols in time to ensure that the MIMO technique becomes simple in FBMC. Secondly, we determine the optimal subcarrier spacing by maximizing the signal-to-interference ratio. Finally, using a lens antenna array combined with a simple channel estimator, we transmit data to the receiver. Simulation results show that FBMC can effectively support multi-antenna and mmWave techniques, providing favorable efficiency and reliability. Furthermore, we also verify that Alamouti's space time block code can provide considerable diversity gain.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1141-1145"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10909513/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Millimeterwave (mmWave) techniques will be a key enabler for wireless communications to achieve high data rates. Additionally, Filter Bank Multi-Carrier (FBMC) with good spectral properties has also been regarded as an important transmission technique for future wireless communications. In this letter, we design and analyze an FBMC-based mmWave Multiple-input Multiple-output (MIMO) system. Specifically, we first pre-code quadrature amplitude modulation symbols in time to ensure that the MIMO technique becomes simple in FBMC. Secondly, we determine the optimal subcarrier spacing by maximizing the signal-to-interference ratio. Finally, using a lens antenna array combined with a simple channel estimator, we transmit data to the receiver. Simulation results show that FBMC can effectively support multi-antenna and mmWave techniques, providing favorable efficiency and reliability. Furthermore, we also verify that Alamouti's space time block code can provide considerable diversity gain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Vision-Inspired Boundary Perception Network for Lightweight Camouflaged Object Detection Adaptive Alignment and Time Aggregation Network for Speech-Visual Emotion Recognition Ambiguity-Free Broadband DOA Estimation Relying on Parameterized Time-Frequency Transform Spectral Scaling-Based Augmentation for Corruption-Robust Image Classification Enhanced Batch Adaptive Filter Based on Fractional-Order Generalized Cauchy Kernel Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1