Zhuang Zhang;Lijun Zhang;Dejian Meng;Wei Tian;Jun Yan
{"title":"Spectral Scaling-Based Augmentation for Corruption-Robust Image Classification","authors":"Zhuang Zhang;Lijun Zhang;Dejian Meng;Wei Tian;Jun Yan","doi":"10.1109/LSP.2025.3549014","DOIUrl":null,"url":null,"abstract":"Image classifiers often degrade in performance when test images differ significantly from the training distribution due to real-world image corruptions. Frequency-based augmentations can be used to address this issue, but existing methods excel against corruptions caused by noise and blur while struggling with those caused by contrast and fog. To tackle these challenges, we propose a novel image augmentation method grounded in a new perspective of relative spectral differences. This perspective characterizes spectral variations introduced by common corruptions as changes in non-zero frequencies, providing a unified understanding of their effects on image spectra. Building on this insight, the proposed method incorporates two key modules: a random spectral scaling module that captures statistical properties of image spectra and a deep spectral scaling module that adaptively learns spectral adjustments through a neural network. Experiments demonstrate that the proposed method improves overall robustness across various corruptions, with notable gains of 6.3% and 6.4% on contrast and fog, respectively, where existing methods often fall short.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1206-1210"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10916994/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Image classifiers often degrade in performance when test images differ significantly from the training distribution due to real-world image corruptions. Frequency-based augmentations can be used to address this issue, but existing methods excel against corruptions caused by noise and blur while struggling with those caused by contrast and fog. To tackle these challenges, we propose a novel image augmentation method grounded in a new perspective of relative spectral differences. This perspective characterizes spectral variations introduced by common corruptions as changes in non-zero frequencies, providing a unified understanding of their effects on image spectra. Building on this insight, the proposed method incorporates two key modules: a random spectral scaling module that captures statistical properties of image spectra and a deep spectral scaling module that adaptively learns spectral adjustments through a neural network. Experiments demonstrate that the proposed method improves overall robustness across various corruptions, with notable gains of 6.3% and 6.4% on contrast and fog, respectively, where existing methods often fall short.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.