Cannabidiol oil delays pancreatic islet dysfunction in Wistar rats under hypercaloric diet

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Biomedicine & Pharmacotherapy Pub Date : 2025-03-18 DOI:10.1016/j.biopha.2025.117993
Edgardo Cortes-Justo , Rocío Ortiz-Butrón , Alonso Vilches-Flores
{"title":"Cannabidiol oil delays pancreatic islet dysfunction in Wistar rats under hypercaloric diet","authors":"Edgardo Cortes-Justo ,&nbsp;Rocío Ortiz-Butrón ,&nbsp;Alonso Vilches-Flores","doi":"10.1016/j.biopha.2025.117993","DOIUrl":null,"url":null,"abstract":"<div><div>Hypercaloric diet (HCD) intake can lead to metabolic alterations, such as metabolic syndrome and type-2 diabetes mellitus. Phytocannabinoid cannabidiol (CBD) is a GPR55 receptor antagonist involved in insulin secretion and other functions in pancreatic islet. The therapeutic use of CBD has been suggested for diabetes, but little is known regarding its effects on pancreatic islet physiology. Our aim was to evaluate the effects of CBD oil on pancreatic islets, from Wistar rats under HCD. Male rats were divided in 4 groups: Normal diet vehicle-treated (control) and CBD-treated group. Rats under HCD were subdivided in treated with vehicle (HCD) and with CBD oil administered 21 mg/Kg orally, 0.5 ml in 3 days per week; controls received coconut oil as vehicle. Body weight, food intake, and water consumption were recorded. After 20 weeks, glucose tolerance curve was performed; serum insulin was determined by ELISA, and pancreas was removed for histological and gene expression analysis for insulin, glucagon, PDX-1, MafA and GPR55 receptor. CBD treatment reduced body weight and food intake but increased fluid consumption, independently of diets. In control group, CBD did not alter blood glucose and serum insulin, but modified expression for GPR55 receptor, glucagon, insulin and MafA. Rats under HCD and treated with CBD decreased glycaemia, insulinaemia, islets relative area, GPR55-positive cells, PDX-1 and MafA gene expression, meanwhile insulin and glucagon expression was increased. In conclusion, CBD ameliorated HCD effects through changes in insulin, glucagon and GPR55 receptor expressions. We assume CBD interacts with other receptors beside GPR55.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"186 ","pages":"Article 117993"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225001878","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hypercaloric diet (HCD) intake can lead to metabolic alterations, such as metabolic syndrome and type-2 diabetes mellitus. Phytocannabinoid cannabidiol (CBD) is a GPR55 receptor antagonist involved in insulin secretion and other functions in pancreatic islet. The therapeutic use of CBD has been suggested for diabetes, but little is known regarding its effects on pancreatic islet physiology. Our aim was to evaluate the effects of CBD oil on pancreatic islets, from Wistar rats under HCD. Male rats were divided in 4 groups: Normal diet vehicle-treated (control) and CBD-treated group. Rats under HCD were subdivided in treated with vehicle (HCD) and with CBD oil administered 21 mg/Kg orally, 0.5 ml in 3 days per week; controls received coconut oil as vehicle. Body weight, food intake, and water consumption were recorded. After 20 weeks, glucose tolerance curve was performed; serum insulin was determined by ELISA, and pancreas was removed for histological and gene expression analysis for insulin, glucagon, PDX-1, MafA and GPR55 receptor. CBD treatment reduced body weight and food intake but increased fluid consumption, independently of diets. In control group, CBD did not alter blood glucose and serum insulin, but modified expression for GPR55 receptor, glucagon, insulin and MafA. Rats under HCD and treated with CBD decreased glycaemia, insulinaemia, islets relative area, GPR55-positive cells, PDX-1 and MafA gene expression, meanwhile insulin and glucagon expression was increased. In conclusion, CBD ameliorated HCD effects through changes in insulin, glucagon and GPR55 receptor expressions. We assume CBD interacts with other receptors beside GPR55.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
期刊最新文献
Editorial Board Formyl peptide receptor 1 signaling strength orchestrates the switch from pro-inflammatory to pro-resolving responses: The way to exert its anti-angiogenic and tumor suppressor functions Vorinostat restores iNKT cell functionality in aggressive cholangiocarcinoma Discovery of new dual butyrylcholinesterase (BuChE) inhibitors and 5-HT7 receptor antagonists as compounds used to treat Alzheimer’s disease symptoms Cannabidiol oil delays pancreatic islet dysfunction in Wistar rats under hypercaloric diet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1