{"title":"Optimizing Cancer Classification and Gene Discovery with an Adaptive Learning Search Algorithm for Microarray Analysis","authors":"Chiwen Qu, Heng Yao, Tingjiang Pan, Zenghui Lu","doi":"10.1007/s42235-025-00656-1","DOIUrl":null,"url":null,"abstract":"<div><p>DNA microarrays, a cornerstone in biomedicine, measure gene expression across thousands to tens of thousands of genes. Identifying the genes vital for accurate cancer classification is a key challenge. Here, we present Fs-LSA (F-score based Learning Search Algorithm), a novel gene selection algorithm designed to enhance the precision and efficiency of target gene identification from microarray data for cancer classification. This algorithm is divided into two phases: the first leverages F-score values to prioritize and select feature genes with the most significant differential expression; the second phase introduces our Learning Search Algorithm (LSA), which harnesses swarm intelligence to identify the optimal subset among the remaining genes. Inspired by human social learning, LSA integrates historical data and collective intelligence for a thorough search, with a dynamic control mechanism that balances exploration and refinement, thereby enhancing the gene selection process. We conducted a rigorous validation of Fs-LSA’s performance using eight publicly available cancer microarray expression datasets. Fs-LSA achieved accuracy, precision, sensitivity, and F1-score values of 0.9932, 0.9923, 0.9962, and 0.994, respectively. Comparative analyses with state-of-the-art algorithms revealed Fs-LSA’s superior performance in terms of simplicity and efficiency. Additionally, we validated the algorithm’s efficacy independently using glioblastoma data from GEO and TCGA databases. It was significantly superior to those of the comparison algorithms. Importantly, the driver genes identified by Fs-LSA were instrumental in developing a predictive model as an independent prognostic indicator for glioblastoma, underscoring Fs-LSA’s transformative potential in genomics and personalized medicine.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"901 - 930"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-025-00656-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA microarrays, a cornerstone in biomedicine, measure gene expression across thousands to tens of thousands of genes. Identifying the genes vital for accurate cancer classification is a key challenge. Here, we present Fs-LSA (F-score based Learning Search Algorithm), a novel gene selection algorithm designed to enhance the precision and efficiency of target gene identification from microarray data for cancer classification. This algorithm is divided into two phases: the first leverages F-score values to prioritize and select feature genes with the most significant differential expression; the second phase introduces our Learning Search Algorithm (LSA), which harnesses swarm intelligence to identify the optimal subset among the remaining genes. Inspired by human social learning, LSA integrates historical data and collective intelligence for a thorough search, with a dynamic control mechanism that balances exploration and refinement, thereby enhancing the gene selection process. We conducted a rigorous validation of Fs-LSA’s performance using eight publicly available cancer microarray expression datasets. Fs-LSA achieved accuracy, precision, sensitivity, and F1-score values of 0.9932, 0.9923, 0.9962, and 0.994, respectively. Comparative analyses with state-of-the-art algorithms revealed Fs-LSA’s superior performance in terms of simplicity and efficiency. Additionally, we validated the algorithm’s efficacy independently using glioblastoma data from GEO and TCGA databases. It was significantly superior to those of the comparison algorithms. Importantly, the driver genes identified by Fs-LSA were instrumental in developing a predictive model as an independent prognostic indicator for glioblastoma, underscoring Fs-LSA’s transformative potential in genomics and personalized medicine.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.