Jiachun Zhang, Tingwei Huo, Yuanming Ji, Haozhen Zhan, Shixun Fu, Jianming Wu, Xipeng Wang, Keju Ji
{"title":"Biomimetic Manipulation of Smooth Solid Surfaces for Vacuum High-Temperature and Vibration Environments","authors":"Jiachun Zhang, Tingwei Huo, Yuanming Ji, Haozhen Zhan, Shixun Fu, Jianming Wu, Xipeng Wang, Keju Ji","doi":"10.1007/s42235-024-00645-w","DOIUrl":null,"url":null,"abstract":"<div><p>In the fields of optoelectronics and semiconductors, reliable fixation and handling of brittle materials (glass, wafer, etc.) in high-temperature, vacuum, and vibration environments face particular technical challenges. These challenges include the inability of suction cups in a vacuum, the residue of chemical adhesives, and the easy damage of mechanical clamping. In this paper, fluorine-based bionic adhesive pads (FBAPs) obtained using molding technology to imitate gecko micropillar arrays are presented. FBAPs inhibit the substantial decay of adhesive properties at high temperatures and provide stable and reliable performance in vacuum and vibration environments. The results demonstrated that the decayed force values of the normal and tangential strength of the FBAP were only 9.01% and 5.82% of the planar samples when warmed up to 300 °C from 25 °C, respectively. In a vacuum, all FBAPs exhibit less than 20% adhesion attenuation, and in a vibrational environment, they can withstand accelerations of at least 4.27 g. The design of the microstructure arrays enables the realization of efficient and non-destructive separation through mechanical rotation or blowing. It provides a bionic material basis for the fixation of brittle materials on smooth surfaces under complex environments and for transportation automation.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"22 2","pages":"755 - 766"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00645-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the fields of optoelectronics and semiconductors, reliable fixation and handling of brittle materials (glass, wafer, etc.) in high-temperature, vacuum, and vibration environments face particular technical challenges. These challenges include the inability of suction cups in a vacuum, the residue of chemical adhesives, and the easy damage of mechanical clamping. In this paper, fluorine-based bionic adhesive pads (FBAPs) obtained using molding technology to imitate gecko micropillar arrays are presented. FBAPs inhibit the substantial decay of adhesive properties at high temperatures and provide stable and reliable performance in vacuum and vibration environments. The results demonstrated that the decayed force values of the normal and tangential strength of the FBAP were only 9.01% and 5.82% of the planar samples when warmed up to 300 °C from 25 °C, respectively. In a vacuum, all FBAPs exhibit less than 20% adhesion attenuation, and in a vibrational environment, they can withstand accelerations of at least 4.27 g. The design of the microstructure arrays enables the realization of efficient and non-destructive separation through mechanical rotation or blowing. It provides a bionic material basis for the fixation of brittle materials on smooth surfaces under complex environments and for transportation automation.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.