The kinase PLK1 promotes Hedgehog signaling–dependent resistance to the antiandrogen enzalutamide in metastatic prostate cancer

IF 6.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Science Signaling Pub Date : 2025-03-18 DOI:10.1126/scisignal.adi5174
Qiongsi Zhang, Jia Peng, Yanquan Zhang, Jinghui Liu, Daheng He, Yue Zhao, Xinyi Wang, Chaohao Li, Yifan Kong, Ruixin Wang, Fengyi Mao, Chi Wang, Qing Wang, Min Zhang, Jianlin Wang, Hsin-Sheng Yang, Xiaoqi Liu
{"title":"The kinase PLK1 promotes Hedgehog signaling–dependent resistance to the antiandrogen enzalutamide in metastatic prostate cancer","authors":"Qiongsi Zhang,&nbsp;Jia Peng,&nbsp;Yanquan Zhang,&nbsp;Jinghui Liu,&nbsp;Daheng He,&nbsp;Yue Zhao,&nbsp;Xinyi Wang,&nbsp;Chaohao Li,&nbsp;Yifan Kong,&nbsp;Ruixin Wang,&nbsp;Fengyi Mao,&nbsp;Chi Wang,&nbsp;Qing Wang,&nbsp;Min Zhang,&nbsp;Jianlin Wang,&nbsp;Hsin-Sheng Yang,&nbsp;Xiaoqi Liu","doi":"10.1126/scisignal.adi5174","DOIUrl":null,"url":null,"abstract":"<div >Enzalutamide, a second-generation androgen receptor inhibitor (also known as an antiandrogen), is used to treat patients with metastatic castration-resistant prostate cancer (CRPC). Tumors often acquire resistance to enzalutamide. Tumor progression and enzalutamide resistance are associated with decreased abundance of the tumor suppressor PDCD4. In normal dividing cells, PDCD4 abundance is low when that of the kinase PLK1 is high. In this study, we found that PLK1 acted on PDCD4 to promote enzalutamide resistance in CRPC cells in culture and in mice via a mechanism that revealed an effective combination therapy. PLK1 phosphorylated PDCD4 at Ser<sup>239</sup>, leading to its degradation and consequently inducing the transcriptional activation of Hedgehog (Hh) signaling by c-MYC. Hh signaling supports tumor cell proliferation and stemness by inducing the enzyme UDP-glucuronosyltransferase 2B15 (UGT2B15), which promotes the metabolic clearance of drugs and steroid hormones. Thus, this pathway may circumvent androgen receptor dependence, thereby reducing cellular sensitivity to enzalutamide. Knocking down UGT2B15 enhanced enzalutamide-induced cell apoptosis and growth arrest in a PDCD4-dependent manner. Combining enzalutamide with the clinically approved Hh pathway inhibitor vismodegib inhibited cell growth and promoted apoptosis in enzalutamide-resistant cell cultures and xenografts in vivo. Our findings reveal a mechanism of PLK1-mediated enzalutamide resistance and suggest a potential therapeutic strategy to overcome this resistance in prostate cancer.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"18 878","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scisignal.adi5174","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://www.science.org/doi/10.1126/scisignal.adi5174","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Enzalutamide, a second-generation androgen receptor inhibitor (also known as an antiandrogen), is used to treat patients with metastatic castration-resistant prostate cancer (CRPC). Tumors often acquire resistance to enzalutamide. Tumor progression and enzalutamide resistance are associated with decreased abundance of the tumor suppressor PDCD4. In normal dividing cells, PDCD4 abundance is low when that of the kinase PLK1 is high. In this study, we found that PLK1 acted on PDCD4 to promote enzalutamide resistance in CRPC cells in culture and in mice via a mechanism that revealed an effective combination therapy. PLK1 phosphorylated PDCD4 at Ser239, leading to its degradation and consequently inducing the transcriptional activation of Hedgehog (Hh) signaling by c-MYC. Hh signaling supports tumor cell proliferation and stemness by inducing the enzyme UDP-glucuronosyltransferase 2B15 (UGT2B15), which promotes the metabolic clearance of drugs and steroid hormones. Thus, this pathway may circumvent androgen receptor dependence, thereby reducing cellular sensitivity to enzalutamide. Knocking down UGT2B15 enhanced enzalutamide-induced cell apoptosis and growth arrest in a PDCD4-dependent manner. Combining enzalutamide with the clinically approved Hh pathway inhibitor vismodegib inhibited cell growth and promoted apoptosis in enzalutamide-resistant cell cultures and xenografts in vivo. Our findings reveal a mechanism of PLK1-mediated enzalutamide resistance and suggest a potential therapeutic strategy to overcome this resistance in prostate cancer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Signaling
Science Signaling BIOCHEMISTRY & MOLECULAR BIOLOGY-CELL BIOLOGY
CiteScore
9.50
自引率
0.00%
发文量
148
审稿时长
3-8 weeks
期刊介绍: "Science Signaling" is a reputable, peer-reviewed journal dedicated to the exploration of cell communication mechanisms, offering a comprehensive view of the intricate processes that govern cellular regulation. This journal, published weekly online by the American Association for the Advancement of Science (AAAS), is a go-to resource for the latest research in cell signaling and its various facets. The journal's scope encompasses a broad range of topics, including the study of signaling networks, synthetic biology, systems biology, and the application of these findings in drug discovery. It also delves into the computational and modeling aspects of regulatory pathways, providing insights into how cells communicate and respond to their environment. In addition to publishing full-length articles that report on groundbreaking research, "Science Signaling" also features reviews that synthesize current knowledge in the field, focus articles that highlight specific areas of interest, and editor-written highlights that draw attention to particularly significant studies. This mix of content ensures that the journal serves as a valuable resource for both researchers and professionals looking to stay abreast of the latest advancements in cell communication science.
期刊最新文献
Structural analysis reveals how tetrameric tyrosine-phosphorylated STAT1 is targeted by the rabies virus P-protein Tales from the cryptic pocket The kinase PLK1 promotes Hedgehog signaling–dependent resistance to the antiandrogen enzalutamide in metastatic prostate cancer NEMO is essential for directing the kinases IKKα and ATM to the sites of DNA damage Metabolic pressure from sensory neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1