Self-Nourishing and Armored Probiotics via Egg-Inspired Encapsulation.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-03-19 DOI:10.1002/adhm.202405219
Sohyeon Park, Sungwon Jung, Geonhui Lee, Erin Lee, Rodger Black, Jinkee Hong, Sangmoo Jeong
{"title":"Self-Nourishing and Armored Probiotics via Egg-Inspired Encapsulation.","authors":"Sohyeon Park, Sungwon Jung, Geonhui Lee, Erin Lee, Rodger Black, Jinkee Hong, Sangmoo Jeong","doi":"10.1002/adhm.202405219","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiota plays an essential role in regulating overall physiology, including metabolism and neurological and immune functions. Therefore, their dysregulation is closely associated with metabolic disorders, such as obesity and diabetes, as well as other pathological conditions, including inflammatory bowel diseases, cancer, and neurological disorders. Probiotics are commonly used to maintain a healthy gut microbiome, but their oral delivery is inefficient mainly due to their poor stability in the harsh gastrointestinal (GI) environment. This work presents an innovative encapsulation strategy, inspired by the natural structure of an egg, for the effective oral delivery of probiotics, termed PIE (Probiotics-In-Egg). The PIE technology is based upon encapsulating probiotics with phosvitin and ovalbumin derived from egg yolk and egg white, respectively. PIE exhibits significantly enhanced survival and proliferation in a simulated GI tract, as well as the ability to neutralize harmful reactive oxygen species (ROS) and sustain in nutrient-depleted conditions. Moreover, when administered orally in mouse models, PIE demonstrates excellent bioavailability and enhanced colonization in the GI tract. This egg-inspired encapsulation technology has great potential as a practical and effective platform for oral delivery of probiotics, which can significantly help maintain a healthy gut microbiome.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2405219"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202405219","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The gut microbiota plays an essential role in regulating overall physiology, including metabolism and neurological and immune functions. Therefore, their dysregulation is closely associated with metabolic disorders, such as obesity and diabetes, as well as other pathological conditions, including inflammatory bowel diseases, cancer, and neurological disorders. Probiotics are commonly used to maintain a healthy gut microbiome, but their oral delivery is inefficient mainly due to their poor stability in the harsh gastrointestinal (GI) environment. This work presents an innovative encapsulation strategy, inspired by the natural structure of an egg, for the effective oral delivery of probiotics, termed PIE (Probiotics-In-Egg). The PIE technology is based upon encapsulating probiotics with phosvitin and ovalbumin derived from egg yolk and egg white, respectively. PIE exhibits significantly enhanced survival and proliferation in a simulated GI tract, as well as the ability to neutralize harmful reactive oxygen species (ROS) and sustain in nutrient-depleted conditions. Moreover, when administered orally in mouse models, PIE demonstrates excellent bioavailability and enhanced colonization in the GI tract. This egg-inspired encapsulation technology has great potential as a practical and effective platform for oral delivery of probiotics, which can significantly help maintain a healthy gut microbiome.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
Dominant Role of Distinct Microenvironments on Cartilage Regeneration Fate Using PLGA-Hydrogel Composite Scaffolds. Enhancing Form Stability: Shrink-Resistant Hydrogels Made of Interpenetrating Networks of Recombinant Spider Silk and Collagen-I. NIR-I Light-Activated Antibiotic Delivery & PDT via TiO2/Graphene Metastructure for Enhanced Antibacterial Activity and Osseointegration of Ti Implants. Ceria-Nanoparticle-Entangled Reticulation for Angiogenic and Therapeutic Embrocation for Multifactorial Approach to Treat Diabetic Wound. Nanozyme-Shelled Microcapsules for Targeting Biofilm Infections in Confined Spaces (Adv. Healthcare Mater. 8/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1