CPPCGM: A Highly Efficient Sequence-Based Tool for Simultaneously Identifying and Generating Cell-Penetrating Peptides.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2025-03-19 DOI:10.1021/acs.jcim.5c00199
Qiufen Chen, Yuewei Zhang, Jiali Gao, Jun Zhang
{"title":"CPPCGM: A Highly Efficient Sequence-Based Tool for Simultaneously Identifying and Generating Cell-Penetrating Peptides.","authors":"Qiufen Chen, Yuewei Zhang, Jiali Gao, Jun Zhang","doi":"10.1021/acs.jcim.5c00199","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-penetrating peptides (CPPs) are usually short oligopeptides with 5-30 amino acid residues. CPPs have been proven as important drug delivery vehicles into cells through different mechanisms, demonstrating their potential as therapeutic candidates. However, experimental screening and synthesis of CPPs could be time-consuming and expensive. Recently, numerous attempts have been made to develop computational methods as a cost-effective way for screening a number of potential CPP candidates. Despite significant advancements, current methods exhibit limited feature representation capabilities, thereby constraining the potential for further performance enhancements. In this study, we developed a deep learning framework called CPPCGM, which uses protein language models (PLMs) to identify and generate novel CPPs. There are two separate blocks in this framework: CPPClassifier and CPPGenerator. The former utilizes three pretrained models for simple voting, thereby accurately categorizing CPPs and non-CPPs. The latter, similar to a generative adversarial network, including a discriminator and a generator, generates peptides that are not present in the training data set. Our proposed CPPCGM has achieved remarkably high Matthews correlation coefficient scores of 0.876, 0.923, and 0.664 on three data sets based on the classification results. Compared with the state-of-the-art methods, the performance of our method is significantly improved. The results also demonstrated the generating potential of CPPCGM through qualitative and quantitative evaluation of the generated samples. Significantly, using PLM-based methods can optimize peptides for biochemical functions, benefiting drug delivery and biomedical applications. Materials related are publicly available at https://github.com/QiufenChen/CPPCGM.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00199","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cell-penetrating peptides (CPPs) are usually short oligopeptides with 5-30 amino acid residues. CPPs have been proven as important drug delivery vehicles into cells through different mechanisms, demonstrating their potential as therapeutic candidates. However, experimental screening and synthesis of CPPs could be time-consuming and expensive. Recently, numerous attempts have been made to develop computational methods as a cost-effective way for screening a number of potential CPP candidates. Despite significant advancements, current methods exhibit limited feature representation capabilities, thereby constraining the potential for further performance enhancements. In this study, we developed a deep learning framework called CPPCGM, which uses protein language models (PLMs) to identify and generate novel CPPs. There are two separate blocks in this framework: CPPClassifier and CPPGenerator. The former utilizes three pretrained models for simple voting, thereby accurately categorizing CPPs and non-CPPs. The latter, similar to a generative adversarial network, including a discriminator and a generator, generates peptides that are not present in the training data set. Our proposed CPPCGM has achieved remarkably high Matthews correlation coefficient scores of 0.876, 0.923, and 0.664 on three data sets based on the classification results. Compared with the state-of-the-art methods, the performance of our method is significantly improved. The results also demonstrated the generating potential of CPPCGM through qualitative and quantitative evaluation of the generated samples. Significantly, using PLM-based methods can optimize peptides for biochemical functions, benefiting drug delivery and biomedical applications. Materials related are publicly available at https://github.com/QiufenChen/CPPCGM.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Enhanced Regioselectivity Prediction of sp2 C-H Halogenation via Negative Data Augmentation and Multimodel Integration. Lipid Shape as a Membrane Activity Modulator of a Fusogenic Antimicrobial Peptide. SFM-Net: Selective Fusion of Multiway Protein Feature Network for Predicting Binding Affinity Changes upon Mutations. CPPCGM: A Highly Efficient Sequence-Based Tool for Simultaneously Identifying and Generating Cell-Penetrating Peptides. Identification and Experimental Validation of NETosis-Mediated Abdominal Aortic Aneurysm Gene Signature Using Multi-omics, Machine Learning, and Mendelian Randomization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1