{"title":"CPPCGM: A Highly Efficient Sequence-Based Tool for Simultaneously Identifying and Generating Cell-Penetrating Peptides.","authors":"Qiufen Chen, Yuewei Zhang, Jiali Gao, Jun Zhang","doi":"10.1021/acs.jcim.5c00199","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-penetrating peptides (CPPs) are usually short oligopeptides with 5-30 amino acid residues. CPPs have been proven as important drug delivery vehicles into cells through different mechanisms, demonstrating their potential as therapeutic candidates. However, experimental screening and synthesis of CPPs could be time-consuming and expensive. Recently, numerous attempts have been made to develop computational methods as a cost-effective way for screening a number of potential CPP candidates. Despite significant advancements, current methods exhibit limited feature representation capabilities, thereby constraining the potential for further performance enhancements. In this study, we developed a deep learning framework called CPPCGM, which uses protein language models (PLMs) to identify and generate novel CPPs. There are two separate blocks in this framework: CPPClassifier and CPPGenerator. The former utilizes three pretrained models for simple voting, thereby accurately categorizing CPPs and non-CPPs. The latter, similar to a generative adversarial network, including a discriminator and a generator, generates peptides that are not present in the training data set. Our proposed CPPCGM has achieved remarkably high Matthews correlation coefficient scores of 0.876, 0.923, and 0.664 on three data sets based on the classification results. Compared with the state-of-the-art methods, the performance of our method is significantly improved. The results also demonstrated the generating potential of CPPCGM through qualitative and quantitative evaluation of the generated samples. Significantly, using PLM-based methods can optimize peptides for biochemical functions, benefiting drug delivery and biomedical applications. Materials related are publicly available at https://github.com/QiufenChen/CPPCGM.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00199","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cell-penetrating peptides (CPPs) are usually short oligopeptides with 5-30 amino acid residues. CPPs have been proven as important drug delivery vehicles into cells through different mechanisms, demonstrating their potential as therapeutic candidates. However, experimental screening and synthesis of CPPs could be time-consuming and expensive. Recently, numerous attempts have been made to develop computational methods as a cost-effective way for screening a number of potential CPP candidates. Despite significant advancements, current methods exhibit limited feature representation capabilities, thereby constraining the potential for further performance enhancements. In this study, we developed a deep learning framework called CPPCGM, which uses protein language models (PLMs) to identify and generate novel CPPs. There are two separate blocks in this framework: CPPClassifier and CPPGenerator. The former utilizes three pretrained models for simple voting, thereby accurately categorizing CPPs and non-CPPs. The latter, similar to a generative adversarial network, including a discriminator and a generator, generates peptides that are not present in the training data set. Our proposed CPPCGM has achieved remarkably high Matthews correlation coefficient scores of 0.876, 0.923, and 0.664 on three data sets based on the classification results. Compared with the state-of-the-art methods, the performance of our method is significantly improved. The results also demonstrated the generating potential of CPPCGM through qualitative and quantitative evaluation of the generated samples. Significantly, using PLM-based methods can optimize peptides for biochemical functions, benefiting drug delivery and biomedical applications. Materials related are publicly available at https://github.com/QiufenChen/CPPCGM.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.