{"title":"Advancements and challenges in the use of surfactants and nanoparticles for enhanced oil recovery: mechanisms, synergies, and field applications.","authors":"Minal Deshmukh, Aadil Pathan","doi":"10.1007/s11356-025-36237-2","DOIUrl":null,"url":null,"abstract":"<p><p>This review highlights the recent advancements and challenges in the use of surfactants and nanoparticles for enhanced oil recovery (EOR). Novel surfactant formulations, including biosurfactants and hybrid systems, have shown improved recovery efficiency and environmental sustainability. Surfactant-polymer mixtures offer synergistic effects that enhance performance across various reservoir conditions. Concurrently, advancements in nanoparticle technology, such as green nanotechnology and improved formulations, have enhanced the stability, dispersion, and functionality of nanoparticles in EOR processes. Critical factors such as nanoparticle size, concentration, and surface modifications play pivotal roles in optimizing oil recovery efficiency. However, significant challenges persist, particularly surfactant adsorption onto rock surfaces and nanoparticle agglomeration, which reduce the overall effectiveness of these techniques. Addressing these limitations requires strategies such as surface modification and advanced delivery mechanisms. Additionally, economic and environmental concerns remain key barriers to large-scale implementation, underscoring the importance of sustainable and cost-effective solutions. A critical gap in the research is the lack of large-scale field studies and long-term monitoring, which are essential for validating laboratory findings and optimizing these technologies for real-world applications. With increasing focus on sustainability, future research is expected to prioritize eco-friendly materials and methods. Integrating surfactant and nanoparticle-based EOR with other recovery techniques, such as thermal and gas injection, holds potential for maximizing oil recovery. Continued research and development are crucial to overcoming current challenges and advancing the sustainability and efficiency of EOR technologies, contributing to a cleaner and more efficient future for oil recovery.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-36237-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This review highlights the recent advancements and challenges in the use of surfactants and nanoparticles for enhanced oil recovery (EOR). Novel surfactant formulations, including biosurfactants and hybrid systems, have shown improved recovery efficiency and environmental sustainability. Surfactant-polymer mixtures offer synergistic effects that enhance performance across various reservoir conditions. Concurrently, advancements in nanoparticle technology, such as green nanotechnology and improved formulations, have enhanced the stability, dispersion, and functionality of nanoparticles in EOR processes. Critical factors such as nanoparticle size, concentration, and surface modifications play pivotal roles in optimizing oil recovery efficiency. However, significant challenges persist, particularly surfactant adsorption onto rock surfaces and nanoparticle agglomeration, which reduce the overall effectiveness of these techniques. Addressing these limitations requires strategies such as surface modification and advanced delivery mechanisms. Additionally, economic and environmental concerns remain key barriers to large-scale implementation, underscoring the importance of sustainable and cost-effective solutions. A critical gap in the research is the lack of large-scale field studies and long-term monitoring, which are essential for validating laboratory findings and optimizing these technologies for real-world applications. With increasing focus on sustainability, future research is expected to prioritize eco-friendly materials and methods. Integrating surfactant and nanoparticle-based EOR with other recovery techniques, such as thermal and gas injection, holds potential for maximizing oil recovery. Continued research and development are crucial to overcoming current challenges and advancing the sustainability and efficiency of EOR technologies, contributing to a cleaner and more efficient future for oil recovery.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.