Disruption of Oligodendroglial Autophagy Leads to Myelin Morphological Deficits, Neuronal Apoptosis, and Cognitive Decline in Aged Mice.

IF 5.4 2区 医学 Q1 NEUROSCIENCES Glia Pub Date : 2025-03-19 DOI:10.1002/glia.70012
Niki Ktena, Dimitrios Spyridakos, Alexandros Georgilis, Ilias Kalafatakis, Efstathia Thomoglou, Angeliki Kolaxi, Vassiliki Nikoletopoulou, Maria Savvaki, Domna Karagogeos
{"title":"Disruption of Oligodendroglial Autophagy Leads to Myelin Morphological Deficits, Neuronal Apoptosis, and Cognitive Decline in Aged Mice.","authors":"Niki Ktena, Dimitrios Spyridakos, Alexandros Georgilis, Ilias Kalafatakis, Efstathia Thomoglou, Angeliki Kolaxi, Vassiliki Nikoletopoulou, Maria Savvaki, Domna Karagogeos","doi":"10.1002/glia.70012","DOIUrl":null,"url":null,"abstract":"<p><p>The aging central nervous system (CNS) is often marked by myelin degeneration, yet the underlying mechanisms remain elusive. This study delves into the previously unexplored role of autophagy in maintaining CNS myelin during aging. We generated the transgenic mouse line plpCre<sup>ERT2</sup>; atg5<sup>f/f</sup>, enabling selective deletion of the core autophagic component Atg5 in oligodendrocytes (OLs) following tamoxifen administration in adulthood, while analysis was conducted on aged mice. Our findings reveal that oligodendroglial autophagy inactivation leads to significant alterations in myelin protein levels. Moreover, the ultrastructural analysis revealed pronounced myelin deficits and increased degeneration of axons, accompanied by apoptosis, as confirmed by immunohistochemistry. Behaviorally, aged knockout (cKO) mice exhibited marked deficits in learning and memory tasks, indicative of cognitive impairment. Additionally, we observed increased activation of microglia, suggesting an inflammatory response linked to the absence of autophagic activity in OLs. These results underscore the critical role of autophagy in OLs for the preservation of CNS myelin and axonal integrity during aging. Our study highlights autophagy as a vital mechanism for neural maintenance, offering potential therapeutic avenues for combating age-related neurodegenerative diseases.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/glia.70012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The aging central nervous system (CNS) is often marked by myelin degeneration, yet the underlying mechanisms remain elusive. This study delves into the previously unexplored role of autophagy in maintaining CNS myelin during aging. We generated the transgenic mouse line plpCreERT2; atg5f/f, enabling selective deletion of the core autophagic component Atg5 in oligodendrocytes (OLs) following tamoxifen administration in adulthood, while analysis was conducted on aged mice. Our findings reveal that oligodendroglial autophagy inactivation leads to significant alterations in myelin protein levels. Moreover, the ultrastructural analysis revealed pronounced myelin deficits and increased degeneration of axons, accompanied by apoptosis, as confirmed by immunohistochemistry. Behaviorally, aged knockout (cKO) mice exhibited marked deficits in learning and memory tasks, indicative of cognitive impairment. Additionally, we observed increased activation of microglia, suggesting an inflammatory response linked to the absence of autophagic activity in OLs. These results underscore the critical role of autophagy in OLs for the preservation of CNS myelin and axonal integrity during aging. Our study highlights autophagy as a vital mechanism for neural maintenance, offering potential therapeutic avenues for combating age-related neurodegenerative diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Glia
Glia 医学-神经科学
CiteScore
13.10
自引率
4.80%
发文量
162
审稿时长
3-8 weeks
期刊介绍: GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.
期刊最新文献
Fibroblasts and hiPS-Derived Astrocytes From CoPAN Patients Showed Different Levels of Iron Overload Correlated With Senescent Phenotype. The X-Linked Intellectual Disability Gene, ZDHHC9, Is Important for Oligodendrocyte Subtype Determination and Myelination. Disruption of Oligodendroglial Autophagy Leads to Myelin Morphological Deficits, Neuronal Apoptosis, and Cognitive Decline in Aged Mice. Issue Information - Table of Contents Cover Image, Volume 73, Issue 5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1