{"title":"The pedal-like loop of (R)-selective transaminases plays a critical role to the functionality of the enzyme.","authors":"Chao Xiang, Yu-Ke Ce, Ya-Ping Xue, Yu-Guo Zheng","doi":"10.1007/s10529-025-03577-5","DOIUrl":null,"url":null,"abstract":"<p><p>In enzyme engineering, a lot of studies have focused on engineering the active site to broaden substrate specificity or enhance transaminase activity; however, relatively little is known about the mechanisms by which substrates are recognized and enter the binding pocket. Transaminases play a crucial role in the synthesis of chiral amines due to their exceptional stereoselectivity and catalytic efficiency. In this study, we explored how the pedal-like loop at the active site influences (R)-transaminase (ATA) activity and substrate recognition by modulating the substrate channel. The pedal-like loop at the active site was swapped with loops from other well-characterized transaminases, and the best-performing variant exhibited a 5.2-fold increase in activity toward (R)-phenylethylamine ((R)-PEA) and an 11.8-fold increase in activity toward isopropylamine (IPA). Additionally, some variants showed significant changes in substrate preference. Homology modeling and molecular docking analysis provided compelling evidence that the pedal-like loop is a critical determinant of both substrate recognition and catalytic activity in (R)-ATA.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"47 2","pages":"35"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-025-03577-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In enzyme engineering, a lot of studies have focused on engineering the active site to broaden substrate specificity or enhance transaminase activity; however, relatively little is known about the mechanisms by which substrates are recognized and enter the binding pocket. Transaminases play a crucial role in the synthesis of chiral amines due to their exceptional stereoselectivity and catalytic efficiency. In this study, we explored how the pedal-like loop at the active site influences (R)-transaminase (ATA) activity and substrate recognition by modulating the substrate channel. The pedal-like loop at the active site was swapped with loops from other well-characterized transaminases, and the best-performing variant exhibited a 5.2-fold increase in activity toward (R)-phenylethylamine ((R)-PEA) and an 11.8-fold increase in activity toward isopropylamine (IPA). Additionally, some variants showed significant changes in substrate preference. Homology modeling and molecular docking analysis provided compelling evidence that the pedal-like loop is a critical determinant of both substrate recognition and catalytic activity in (R)-ATA.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.