A chromatin-focused CRISPR screen identifies USP22 as a barrier to somatic cell reprogramming.

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2025-03-18 DOI:10.1038/s42003-025-07899-y
Gülben Gürhan, Kenan Sevinç, Can Aztekin, Mert Gayretli, Alperen Yılmaz, Abdullah Burak Yıldız, Elif Naz Ervatan, Tunç Morova, Elif Datlı, Oliver D Coleman, Akane Kawamura, Nathan A Lack, Hamzah Syed, Tamer Önder
{"title":"A chromatin-focused CRISPR screen identifies USP22 as a barrier to somatic cell reprogramming.","authors":"Gülben Gürhan, Kenan Sevinç, Can Aztekin, Mert Gayretli, Alperen Yılmaz, Abdullah Burak Yıldız, Elif Naz Ervatan, Tunç Morova, Elif Datlı, Oliver D Coleman, Akane Kawamura, Nathan A Lack, Hamzah Syed, Tamer Önder","doi":"10.1038/s42003-025-07899-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-autonomous barriers to reprogramming somatic cells into induced pluripotent stem cells (iPSCs) remain poorly understood. Using a focused CRISPR-Cas9 screen, we identified Ubiquitin-specific peptidase 22 (USP22) as a key chromatin-based barrier to human iPSC derivation. Suppression of USP22 significantly enhances reprogramming efficiency. Surprisingly, this effect is likely to be independent of USP22's deubiquitinase activity or its association with the SAGA complex, as shown through module-specific knockouts, and genetic rescue experiments. USP22 is not required for iPSC derivation or maintenance. Mechanistically, USP22 loss during reprogramming downregulates fibroblast-specific genes while activating pluripotency-associated genes, including DNMT3L, LIN28A, SOX2, and GDF3. Additionally, USP22 loss enhances reprogramming efficiency under naïve stem cell conditions. These findings reveal an unrecognized role for USP22 in maintaining somatic cell identity and repressing pluripotency genes, highlighting its potential as a target to improve reprogramming efficiency.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"454"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07899-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell-autonomous barriers to reprogramming somatic cells into induced pluripotent stem cells (iPSCs) remain poorly understood. Using a focused CRISPR-Cas9 screen, we identified Ubiquitin-specific peptidase 22 (USP22) as a key chromatin-based barrier to human iPSC derivation. Suppression of USP22 significantly enhances reprogramming efficiency. Surprisingly, this effect is likely to be independent of USP22's deubiquitinase activity or its association with the SAGA complex, as shown through module-specific knockouts, and genetic rescue experiments. USP22 is not required for iPSC derivation or maintenance. Mechanistically, USP22 loss during reprogramming downregulates fibroblast-specific genes while activating pluripotency-associated genes, including DNMT3L, LIN28A, SOX2, and GDF3. Additionally, USP22 loss enhances reprogramming efficiency under naïve stem cell conditions. These findings reveal an unrecognized role for USP22 in maintaining somatic cell identity and repressing pluripotency genes, highlighting its potential as a target to improve reprogramming efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
Peli1, regulated by m6A modification, suppresses NLRP3 inflammasome activation in atherosclerosis by inhibiting YB-1. SunTag-PE: a modular prime editing system enables versatile and efficient genome editing. POT, an optogenetics-based endogenous protein degradation system. The differentiated impacts and constraints of allometry, phylogeny, and environment on the ruminants' ankle bone. A chromatin-focused CRISPR screen identifies USP22 as a barrier to somatic cell reprogramming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1