{"title":"Title: Identification of Redox State Based on the Difference in Solvation Dynamics.","authors":"Yasuhiro Kato, Jelena Muncan, Yoshinori Hirano, Hiroko Yamamoto, Roumiana Tsenkova, Masato Yasui","doi":"10.1002/open.202400278","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidation-reduction (Redox) reactions are crucial for many biological processes, yet there is no method available to evaluate redox states in a non-invasive, continuous manner. Here we introduce a novel approach to distinguish between reduced and oxidized states of glutathione (GSH and GSSG, respectively) using aquaphotomics near-infrared (NIR) spectroscopy and multivariate analysis. We identified clear differences in NIR spectra reflecting not only glutathione itself, but different redox states of glutathione based on the spectral features of water molecular conformations interacting with the reaction site. Molecular dynamic simulations also revealed the difference in water molecule coordination and hydration numbers around the reaction site. This approach not only sheds light on the significance of water molecules in redox reactions but also enables non-destructive, continuous assessment of redox states, with potential applications for bioreactor optimization.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400278"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202400278","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidation-reduction (Redox) reactions are crucial for many biological processes, yet there is no method available to evaluate redox states in a non-invasive, continuous manner. Here we introduce a novel approach to distinguish between reduced and oxidized states of glutathione (GSH and GSSG, respectively) using aquaphotomics near-infrared (NIR) spectroscopy and multivariate analysis. We identified clear differences in NIR spectra reflecting not only glutathione itself, but different redox states of glutathione based on the spectral features of water molecular conformations interacting with the reaction site. Molecular dynamic simulations also revealed the difference in water molecule coordination and hydration numbers around the reaction site. This approach not only sheds light on the significance of water molecules in redox reactions but also enables non-destructive, continuous assessment of redox states, with potential applications for bioreactor optimization.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.