Esc peptides and derivatives potentiate the activity of CFTR with gating defects and display antipseudomonal activity in cystic fibrosis-like lung disease.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cellular and Molecular Life Sciences Pub Date : 2025-03-18 DOI:10.1007/s00018-025-05633-9
Loretta Ferrera, Floriana Cappiello, Arianna Venturini, Hexin Lu, Bruno Casciaro, Giacomo Cappella, Giulio Bontempi, Alessandra Corrente, Raffaele Strippoli, Federico Zara, Y Peter Di, Luis J V Galietta, Mattia Mori, Maria Luisa Mangoni
{"title":"Esc peptides and derivatives potentiate the activity of CFTR with gating defects and display antipseudomonal activity in cystic fibrosis-like lung disease.","authors":"Loretta Ferrera, Floriana Cappiello, Arianna Venturini, Hexin Lu, Bruno Casciaro, Giacomo Cappella, Giulio Bontempi, Alessandra Corrente, Raffaele Strippoli, Federico Zara, Y Peter Di, Luis J V Galietta, Mattia Mori, Maria Luisa Mangoni","doi":"10.1007/s00018-025-05633-9","DOIUrl":null,"url":null,"abstract":"<p><p>Cystic fibrosis (CF) is a rare disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), a chloride channel with an important role in the airways. Despite the clinical efficacy of present modulators in restoring the activity of defective CFTR, there are patients who show persistent pulmonary infections, mainly due to Pseudomonas aeruginosa. Recently, we reported an unprecedented property of antimicrobial peptides i.e. Esc peptides, which consists in their ability to act as potentiators of CFTR carrying the most common mutation (the loss of phenylalanine 508) affecting protein folding, trafficking and gating. In this work, by electrophysiology experiments and computational studies, the capability of these peptides and de-novo designed analogs was demonstrated to recover the function of other mutated forms of CFTR which severely affect the channel gating (G551D and G1349D). This is presumably due to direct interaction of the peptides with the nucleotide binding domains (NBDs) of CFTR, followed by a novel local phenomenon consisting in distancing residues located at the cytosolic side of the NBDs interface, thus stabilizing the open conformation of the pore at its cytosolic end. The most promising peptides for the dual antimicrobial and CFTR potentiator activities were also shown to display antipseudomonal activity in conditions mimicking the CF pulmonary ion transport and mucus obstruction, with a higher efficacy than the clinically used colistin. These studies should assist in development of novel drugs for lung pathology in CF, with dual CFTR potentiator and large spectrum antibiotic activities.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"121"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05633-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cystic fibrosis (CF) is a rare disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), a chloride channel with an important role in the airways. Despite the clinical efficacy of present modulators in restoring the activity of defective CFTR, there are patients who show persistent pulmonary infections, mainly due to Pseudomonas aeruginosa. Recently, we reported an unprecedented property of antimicrobial peptides i.e. Esc peptides, which consists in their ability to act as potentiators of CFTR carrying the most common mutation (the loss of phenylalanine 508) affecting protein folding, trafficking and gating. In this work, by electrophysiology experiments and computational studies, the capability of these peptides and de-novo designed analogs was demonstrated to recover the function of other mutated forms of CFTR which severely affect the channel gating (G551D and G1349D). This is presumably due to direct interaction of the peptides with the nucleotide binding domains (NBDs) of CFTR, followed by a novel local phenomenon consisting in distancing residues located at the cytosolic side of the NBDs interface, thus stabilizing the open conformation of the pore at its cytosolic end. The most promising peptides for the dual antimicrobial and CFTR potentiator activities were also shown to display antipseudomonal activity in conditions mimicking the CF pulmonary ion transport and mucus obstruction, with a higher efficacy than the clinically used colistin. These studies should assist in development of novel drugs for lung pathology in CF, with dual CFTR potentiator and large spectrum antibiotic activities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
期刊最新文献
Esc peptides and derivatives potentiate the activity of CFTR with gating defects and display antipseudomonal activity in cystic fibrosis-like lung disease. Interneuron migration impairment and brain region-specific DNA damage response following irradiation during early neurogenesis in mice. Loss of Cep135 causes oligoasthenoteratozoospermia and male infertility in mice. Targeting HIF-2α in glioblastoma reshapes the immune infiltrate and enhances response to immune checkpoint blockade. What are the ethical limits of claimed scientific authorship? a case report of relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1