Large-scale computational modelling of H5 influenza variants against HA1-neutralising antibodies.

IF 9.7 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL EBioMedicine Pub Date : 2025-03-17 DOI:10.1016/j.ebiom.2025.105632
Colby T Ford, Shirish Yasa, Khaled Obeid, Rafael Jaimes, Phillip J Tomezsko, Sayal Guirales-Medrano, Richard Allen White, Daniel Janies
{"title":"Large-scale computational modelling of H5 influenza variants against HA1-neutralising antibodies.","authors":"Colby T Ford, Shirish Yasa, Khaled Obeid, Rafael Jaimes, Phillip J Tomezsko, Sayal Guirales-Medrano, Richard Allen White, Daniel Janies","doi":"10.1016/j.ebiom.2025.105632","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The United States Department of Agriculture has recently released reports that show samples collected from 2022 to 2025 of highly pathogenic avian influenza (H5N1) have been detected in mammals and birds. Up to February 2025, the United States Centres for Disease Control and Prevention reports that there have been 67 humans infected with H5N1 since 2024 with 1 death. The broader potential impact on human health remains unclear.</p><p><strong>Methods: </strong>In this study, we computationally model 1804 protein complexes consisting of various H5 isolates from 1959 to 2024 against 11 haemagglutinin domain 1 (HA1)-neutralising antibodies. This was performed using AI-based protein folding and physics-based simulations of the antibody-antigen interactions. We analysed binding affinity changes over time and across various antibodies using multiple biochemical and biophysical binding metrics.</p><p><strong>Findings: </strong>This study shows a trend of weakening binding affinity of existing antibodies against H5 isolates over time, indicating that the H5N1 virus is evolving immune escape from our therapeutic and immunological defences. We also found that based on the wide variety of host species and geographic locations in which H5N1 was observed to have been transmitted from birds to mammals, there is not a single central reservoir host species or location associated with H5N1's spread.</p><p><strong>Interpretation: </strong>These results indicate that the virus has potential to move from epidemic to pandemic status. This study illustrates the value of high-performance computing to rapidly model protein-protein interactions and viral genomic sequence data at-scale for functional insights into medical preparedness.</p><p><strong>Funding: </strong>No external funding was used in this study.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"114 ","pages":"105632"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2025.105632","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The United States Department of Agriculture has recently released reports that show samples collected from 2022 to 2025 of highly pathogenic avian influenza (H5N1) have been detected in mammals and birds. Up to February 2025, the United States Centres for Disease Control and Prevention reports that there have been 67 humans infected with H5N1 since 2024 with 1 death. The broader potential impact on human health remains unclear.

Methods: In this study, we computationally model 1804 protein complexes consisting of various H5 isolates from 1959 to 2024 against 11 haemagglutinin domain 1 (HA1)-neutralising antibodies. This was performed using AI-based protein folding and physics-based simulations of the antibody-antigen interactions. We analysed binding affinity changes over time and across various antibodies using multiple biochemical and biophysical binding metrics.

Findings: This study shows a trend of weakening binding affinity of existing antibodies against H5 isolates over time, indicating that the H5N1 virus is evolving immune escape from our therapeutic and immunological defences. We also found that based on the wide variety of host species and geographic locations in which H5N1 was observed to have been transmitted from birds to mammals, there is not a single central reservoir host species or location associated with H5N1's spread.

Interpretation: These results indicate that the virus has potential to move from epidemic to pandemic status. This study illustrates the value of high-performance computing to rapidly model protein-protein interactions and viral genomic sequence data at-scale for functional insights into medical preparedness.

Funding: No external funding was used in this study.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EBioMedicine
EBioMedicine Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍: eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.
期刊最新文献
Large-scale computational modelling of H5 influenza variants against HA1-neutralising antibodies. Next-generation diagnostics of bloodstream infections enabled by rapid whole-genome sequencing of bacterial cells purified from blood cultures. Safety, reactogenicity, and immunogenicity of MTBVAC in infants: a phase 2a randomised, double-blind, dose-defining trial in a TB endemic setting. The INO80E at 16p11.2 locus increases risk of schizophrenia in humans and induces schizophrenia-like phenotypes in mice. VIPAS39 confers ferroptosis resistance in epithelial ovarian cancer through exporting ACSL4.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1