Continuous preparation of long-acting hydromorphone PLGA microspheres using an automatic and scalable microfluidic process system.

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2025-03-16 DOI:10.1016/j.ijpharm.2025.125459
Quan Liu, Huiting Liu, Haoxiang Wu, Yongzhuo Huang, Hao Wang, Fuli Zhang
{"title":"Continuous preparation of long-acting hydromorphone PLGA microspheres using an automatic and scalable microfluidic process system.","authors":"Quan Liu, Huiting Liu, Haoxiang Wu, Yongzhuo Huang, Hao Wang, Fuli Zhang","doi":"10.1016/j.ijpharm.2025.125459","DOIUrl":null,"url":null,"abstract":"<p><p>The long-acting hydromorphone loaded poly-lactic-co-glycolic acid (HM-PLGA) microspheres for chronic pain management were developed and prepared using an automatic and scalable microfluidic process system in this study. The system consists of a novel designed micro-mixer for particle generation, syringe and HPLC pumps for continuous dosing, a process Raman spectrometer as process analytical technology (PAT) tool and an automation system for programmable automatic control. With the benefits of the automation and digitalization of the system, a wide range of formulation parameters was investigated for its impact on the properties of the microspheres. The particle size of the HM-PLGA microspheres was tunable with the automatic microfluidic process system. The long-acting injectable homogeneous HM-PLGA microspheres were successfully prepared with maximum drug-loading capacity of 7.71 % and drug encapsulation efficiency of 69.40 %. The physical and chemical properties were characterized using various analytical technologies. Pharmacokinetic experiments in female ICR mice confirmed prolonged exposure in plasma compared to the HM hydrochloride injection. In vivo studies in beagle dogs showed that the HM-PLGA microspheres provided sustained drug release for over 11 days. The results demonstrated the potential of the novel automatic microfluidic process system in the development and continuous manufacturing of the particle size-controllable drug loaded microspheres.</p>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":" ","pages":"125459"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpharm.2025.125459","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The long-acting hydromorphone loaded poly-lactic-co-glycolic acid (HM-PLGA) microspheres for chronic pain management were developed and prepared using an automatic and scalable microfluidic process system in this study. The system consists of a novel designed micro-mixer for particle generation, syringe and HPLC pumps for continuous dosing, a process Raman spectrometer as process analytical technology (PAT) tool and an automation system for programmable automatic control. With the benefits of the automation and digitalization of the system, a wide range of formulation parameters was investigated for its impact on the properties of the microspheres. The particle size of the HM-PLGA microspheres was tunable with the automatic microfluidic process system. The long-acting injectable homogeneous HM-PLGA microspheres were successfully prepared with maximum drug-loading capacity of 7.71 % and drug encapsulation efficiency of 69.40 %. The physical and chemical properties were characterized using various analytical technologies. Pharmacokinetic experiments in female ICR mice confirmed prolonged exposure in plasma compared to the HM hydrochloride injection. In vivo studies in beagle dogs showed that the HM-PLGA microspheres provided sustained drug release for over 11 days. The results demonstrated the potential of the novel automatic microfluidic process system in the development and continuous manufacturing of the particle size-controllable drug loaded microspheres.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Enhanced antibacterial efficacy of new benzothiazole phthalimide hybrid compounds/methyl-β-cyclodextrin inclusion complexes compared to the free forms: Insights into the possible mode of action Innovative centrifugal microfluidic approach for risperidone-loaded PLGA microsphere production CD44-Targeted nanoparticles for remodeling the tumor microenvironment in a 3D Macrophage-Embedded ovarian cancer model with stem Cell-Like features. Construction and application of macrophage-based extracellular drug-loaded delivery systems. Continuous preparation of long-acting hydromorphone PLGA microspheres using an automatic and scalable microfluidic process system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1