Cathelicidin-related antimicrobial peptide (CRAMP) is toxic during neonatal murine influenza virus infection.

IF 3.6 3区 医学 Q2 IMMUNOLOGY Journal of immunology Pub Date : 2025-03-18 DOI:10.1093/jimmun/vkae053
Abhishek S Rao, Nneka Ugwu, Abigail P Onufer, Ogan Kumova, Alison J Carey
{"title":"Cathelicidin-related antimicrobial peptide (CRAMP) is toxic during neonatal murine influenza virus infection.","authors":"Abhishek S Rao, Nneka Ugwu, Abigail P Onufer, Ogan Kumova, Alison J Carey","doi":"10.1093/jimmun/vkae053","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory viral infections are a major contributor to mortality in children under 5 years of age, and disproportionately affect preterm neonates. Previously, using our established 3-day-old neonatal murine model of influenza virus infection, we demonstrated that treatment of neonatal mice with intranasal Lactobacillus rhamnosus GG (LGG) prior to influenza viral infection improved survival. Transcriptional analysis revealed expression of the mouse cathelicidin-related antimicrobial peptide (CRAMP, encoded by CRAMP) was downregulated in LGG-treated neonates. Mouse CRAMP is a key effector protein secreted by infected epithelial cells and resident and infiltrating immune cells, but the role of CRAMP in neonatal defense to respiratory viruses is unknown. Neonatal mice with a deleted CRAMP gene (CRAMP-/-) were intranasally infected with influenza virus. CRAMP-/- neonates had improved survival over C57BL/6 neonates after influenza viral infection (75% vs. 14%, p < 0.05). Next, immune cell recruitment to the lung of infected neonates was determined. Surprisingly, at 3-days postinfection, there was increased recruitment of neutrophils, inflammatory monocytes, and alveolar macrophages, coupled with increased proinflammatory cytokine and chemokine production in CRAMP-/- compared to C57BL/6 neonates. However, this changed over the first week of infection. C57BL/6 neonatal mice increased CRAMP production significantly, in direct contrast to their adult counterparts. Inflammatory cytokine production increased that indicated CRAMP amplified the innate immune response later in the infection. Furthermore, we identified pulmonary nonimmune cells as an important source of increased CRAMP levels as the infection progressed and CRAMP production drove mortality. These insights emphasize the age-specific role of CRAMP in influenza viral pathogenesis.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jimmun/vkae053","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Respiratory viral infections are a major contributor to mortality in children under 5 years of age, and disproportionately affect preterm neonates. Previously, using our established 3-day-old neonatal murine model of influenza virus infection, we demonstrated that treatment of neonatal mice with intranasal Lactobacillus rhamnosus GG (LGG) prior to influenza viral infection improved survival. Transcriptional analysis revealed expression of the mouse cathelicidin-related antimicrobial peptide (CRAMP, encoded by CRAMP) was downregulated in LGG-treated neonates. Mouse CRAMP is a key effector protein secreted by infected epithelial cells and resident and infiltrating immune cells, but the role of CRAMP in neonatal defense to respiratory viruses is unknown. Neonatal mice with a deleted CRAMP gene (CRAMP-/-) were intranasally infected with influenza virus. CRAMP-/- neonates had improved survival over C57BL/6 neonates after influenza viral infection (75% vs. 14%, p < 0.05). Next, immune cell recruitment to the lung of infected neonates was determined. Surprisingly, at 3-days postinfection, there was increased recruitment of neutrophils, inflammatory monocytes, and alveolar macrophages, coupled with increased proinflammatory cytokine and chemokine production in CRAMP-/- compared to C57BL/6 neonates. However, this changed over the first week of infection. C57BL/6 neonatal mice increased CRAMP production significantly, in direct contrast to their adult counterparts. Inflammatory cytokine production increased that indicated CRAMP amplified the innate immune response later in the infection. Furthermore, we identified pulmonary nonimmune cells as an important source of increased CRAMP levels as the infection progressed and CRAMP production drove mortality. These insights emphasize the age-specific role of CRAMP in influenza viral pathogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在新生小鼠感染流感病毒期间,猫科动物鞘磷脂相关抗菌肽(CRAMP)具有毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of immunology
Journal of immunology 医学-免疫学
CiteScore
8.20
自引率
2.30%
发文量
495
审稿时长
1 months
期刊介绍: The JI publishes novel, peer-reviewed findings in all areas of experimental immunology, including innate and adaptive immunity, inflammation, host defense, clinical immunology, autoimmunity and more. Special sections include Cutting Edge articles, Brief Reviews and Pillars of Immunology. The JI is published by The American Association of Immunologists (AAI)
期刊最新文献
B cells and aging: a historical perspective. IL-7Rα signaling in regulatory T cells of adipose tissue is essential for systemic glucose homeostasis. A genetically modulated Toll-like receptor-tolerant phenotype in peripheral blood cells of children with multisystem inflammatory syndrome. Cathelicidin-related antimicrobial peptide (CRAMP) is toxic during neonatal murine influenza virus infection. CD209d/e are required for macrophage-mediated phagocytosis and activation during methicillin-resistant Staphylococcus aureus pulmonary host defense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1