{"title":"A bilinear model for the elastic response of hydrated lipid bilayers under normal pressure difference.","authors":"A Farhangian, L Cowley, Y Dubief","doi":"10.1063/5.0226774","DOIUrl":null,"url":null,"abstract":"<p><p>The elasticity of phospholipid membranes as a function of hydration was investigated using coarse-grained molecular simulations. Multilamellar membranes consist of two or more lipid bilayers separated by a thin layer of water, a system commonly found in cell membranes that provides surface tension in the alveoli of the lungs and on cartilaginous surfaces of synovial joints. The objective was to quantify the response of such systems to compression in the direction perpendicular to the membranes as a function of the amount of water between the bilayers or hydration of the system. The present study investigated a variety of phospholipids with six levels of hydration found in multilamellar bilayers in biological systems. Our simulations support the existence of a universal behavior of the increase in surface area per lipid as a function of the normal pressure difference, the difference between the pressure applied in the direction normal to the membrane and the pressure applied in the directions parallel to the membrane. Normalizing the surface area per lipid and the pressure difference by their respective values at rupture yields a composite function of two linear regimes for all the hydration levels under investigation. Where possible, a physics-based interpretation of the normalization scales was provided. Although some parameters of the model are determined empirically, the model represents a promising step in continuum modeling of the response of multilamellar lipid membranes as a function of mechanical stress and hydration.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0226774","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The elasticity of phospholipid membranes as a function of hydration was investigated using coarse-grained molecular simulations. Multilamellar membranes consist of two or more lipid bilayers separated by a thin layer of water, a system commonly found in cell membranes that provides surface tension in the alveoli of the lungs and on cartilaginous surfaces of synovial joints. The objective was to quantify the response of such systems to compression in the direction perpendicular to the membranes as a function of the amount of water between the bilayers or hydration of the system. The present study investigated a variety of phospholipids with six levels of hydration found in multilamellar bilayers in biological systems. Our simulations support the existence of a universal behavior of the increase in surface area per lipid as a function of the normal pressure difference, the difference between the pressure applied in the direction normal to the membrane and the pressure applied in the directions parallel to the membrane. Normalizing the surface area per lipid and the pressure difference by their respective values at rupture yields a composite function of two linear regimes for all the hydration levels under investigation. Where possible, a physics-based interpretation of the normalization scales was provided. Although some parameters of the model are determined empirically, the model represents a promising step in continuum modeling of the response of multilamellar lipid membranes as a function of mechanical stress and hydration.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.