Impact of radiotherapy in chemical composition and mechanical properties of human cervical dentin: an in vitro study.

IF 2.2 3区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE Journal of Applied Oral Science Pub Date : 2025-03-14 eCollection Date: 2025-01-01 DOI:10.1590/1678-7757-2024-0279
Renata Borges Rodrigues, Allyne Jorcelino Daloia de Carvalho, Bruna Vanessa Felipe E Silva, Paulo Cézar Simamoto-Júnior, Veridiana Resende Novais
{"title":"Impact of radiotherapy in chemical composition and mechanical properties of human cervical dentin: an in vitro study.","authors":"Renata Borges Rodrigues, Allyne Jorcelino Daloia de Carvalho, Bruna Vanessa Felipe E Silva, Paulo Cézar Simamoto-Júnior, Veridiana Resende Novais","doi":"10.1590/1678-7757-2024-0279","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ionizing radiation directly affects hard dental tissues, compromising the dental structure, which results in damage to dentin collagen fibers and impacts the integrity of the dentin-enamel junction (DEJ).</p><p><strong>Objective: </strong>To evaluate the effects of radiotherapy on the chemical composition and mechanical properties of human cervical dentin.</p><p><strong>Methodology: </strong>Ten third molars were divided into control/non-irradiated and irradiated groups (n=5). The irradiated teeth were subjected to in vitro radiotherapy with the following protocol: 1.8 Gy daily, five days per week for eight weeks, totaling 72 Gy. The dentin in the cervical region was evaluated for each group. The chemical composition was assessed using Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, focusing on the mineral/matrix ratio (M:M), carbonate/mineral ratio (C:M), and amide I/amide III ratio. Amide I/CH2 ratio was used to assess collagen quality, as amide I reflects protein conformation and hydrogen bonding, while CH2 indicates side-chain vibrations with low sensitivity to molecular orientation. Nanohardness and elastic modulus were evaluated by instrumented indentation. Scanning electron microscopy (SEM) was used to assess the enamel's morphology. Statistical analysis of each parameter was performed using a t-test.</p><p><strong>Results: </strong>The FTIR analysis showed statistically significant differences in the C:M ratio (p=0.004) and amide I/amide III ratio (p=0.007). Raman spectroscopy revealed significant differences in the M:M ratio (p<0.001), as well as in the amide I/amide III (p<0.001) and amide I/CH2 ratios (p<0.001). Additionally, nanohardness (p=0.04) and the elastic modulus (p=0.003) showed statistically significant differences. SEM images revealed sound dentin shows normal tissue organization, whereas irradiated dentin showed no clear limit between peri and intertubular dentin.</p><p><strong>Conclusions: </strong>Radiotherapy induced significant changes in dentin composition and mechanical properties, characterized by increased organic content and phosphate levels, reduced carbonate, and decreased nanohardness and elastic modulus. These findings highlight the adverse effects on dentin's structural integrity.</p>","PeriodicalId":15133,"journal":{"name":"Journal of Applied Oral Science","volume":"33 ","pages":"e20240279"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Oral Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1678-7757-2024-0279","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Ionizing radiation directly affects hard dental tissues, compromising the dental structure, which results in damage to dentin collagen fibers and impacts the integrity of the dentin-enamel junction (DEJ).

Objective: To evaluate the effects of radiotherapy on the chemical composition and mechanical properties of human cervical dentin.

Methodology: Ten third molars were divided into control/non-irradiated and irradiated groups (n=5). The irradiated teeth were subjected to in vitro radiotherapy with the following protocol: 1.8 Gy daily, five days per week for eight weeks, totaling 72 Gy. The dentin in the cervical region was evaluated for each group. The chemical composition was assessed using Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, focusing on the mineral/matrix ratio (M:M), carbonate/mineral ratio (C:M), and amide I/amide III ratio. Amide I/CH2 ratio was used to assess collagen quality, as amide I reflects protein conformation and hydrogen bonding, while CH2 indicates side-chain vibrations with low sensitivity to molecular orientation. Nanohardness and elastic modulus were evaluated by instrumented indentation. Scanning electron microscopy (SEM) was used to assess the enamel's morphology. Statistical analysis of each parameter was performed using a t-test.

Results: The FTIR analysis showed statistically significant differences in the C:M ratio (p=0.004) and amide I/amide III ratio (p=0.007). Raman spectroscopy revealed significant differences in the M:M ratio (p<0.001), as well as in the amide I/amide III (p<0.001) and amide I/CH2 ratios (p<0.001). Additionally, nanohardness (p=0.04) and the elastic modulus (p=0.003) showed statistically significant differences. SEM images revealed sound dentin shows normal tissue organization, whereas irradiated dentin showed no clear limit between peri and intertubular dentin.

Conclusions: Radiotherapy induced significant changes in dentin composition and mechanical properties, characterized by increased organic content and phosphate levels, reduced carbonate, and decreased nanohardness and elastic modulus. These findings highlight the adverse effects on dentin's structural integrity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
放疗对人牙颈部牙本质化学成分和机械性能的影响:体外研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Oral Science
Journal of Applied Oral Science 医学-牙科与口腔外科
CiteScore
4.80
自引率
3.70%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Journal of Applied Oral Science is committed in publishing the scientific and technologic advances achieved by the dental community, according to the quality indicators and peer reviewed material, with the objective of assuring its acceptability at the local, regional, national and international levels. The primary goal of The Journal of Applied Oral Science is to publish the outcomes of original investigations as well as invited case reports and invited reviews in the field of Dentistry and related areas.
期刊最新文献
Immunomodulatory effects of apical papilla cells on periodontal ligament fibroblasts stimulated with Escherichia coli lipopolysaccharide: an in vitro study. Impact of radiotherapy in chemical composition and mechanical properties of human cervical dentin: an in vitro study. Exploring polymorphisms in genes encoding growth factors associated with non-syndromic cleft lip with or without cleft palate and tooth agenesis. Lipid nanocarrier containing eugenol for denture hygiene: evaluation of efficacy against Candida biofilms. Bmal1 knockout aggravates Porphyromonas gingivalis-induced periodontitis by activating the NF-κB pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1