Survival prediction with radiomics for patients with IDH mutated lower-grade glioma.

IF 3.2 2区 医学 Q2 CLINICAL NEUROLOGY Journal of Neuro-Oncology Pub Date : 2025-03-18 DOI:10.1007/s11060-025-05006-z
Alice Neimantaite, Louise Carstam, Tomás Gómez Vecchio, Ida Häggström, Tora Dunås, Francesco Latini, Maria Zetterling, Malin Blomstrand, Jiri Bartek, Margret Jensdottir, Erik Thurin, Anja Smits, Asgeir S Jakola
{"title":"Survival prediction with radiomics for patients with IDH mutated lower-grade glioma.","authors":"Alice Neimantaite, Louise Carstam, Tomás Gómez Vecchio, Ida Häggström, Tora Dunås, Francesco Latini, Maria Zetterling, Malin Blomstrand, Jiri Bartek, Margret Jensdottir, Erik Thurin, Anja Smits, Asgeir S Jakola","doi":"10.1007/s11060-025-05006-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Adult patients with diffuse lower-grade gliomas (dLGG) show heterogeneous survival outcomes, complicating postoperative treatment planning. Treating all patients early increases the risk of long-term side effects, while delayed treatment may lead to impaired survival. Refinement of prognostic models could optimize timing of treatment. Conventional radiological features are prognostic in dLGG, but MRI could carry more prognostic information. This study aimed to investigate MRI-based radiomics survival models and compare them with clinical models.</p><p><strong>Methods: </strong>Two clinical survival models were created: a preoperative model (tumor volume) and a full clinical model (tumor volume, extent of resection, tumor subtype). Radiomics features were extracted from preoperative MRI. The dataset was divided into training set and unseen test set (70:30). Model performance was evaluated on test set with Uno's concordance index (c-index). Risk groups were created by the best performing model's predictions.</p><p><strong>Results: </strong>207 patients with mutated IDH (mIDH) dLGG were included. The preoperative clinical, full clinical and radiomics models showed c-indexes of 0.70, 0.71 and 0.75 respectively on test set for overall survival. The radiomics model included four features of tumor diameter and tumor heterogeneity. The combined full clinical and radiomics model showed best performance with c-index = 0.79. The survival difference between high- and low-risk patients according to the combined model was both statistically significant and clinically relevant.</p><p><strong>Conclusion: </strong>Radiomics can capture quantitative prognostic information in patients with dLGG. Combined models show promise of synergetic effects and should be studied further in astrocytoma and oligodendroglioma patients separately for optimal modelling of individual risks.</p>","PeriodicalId":16425,"journal":{"name":"Journal of Neuro-Oncology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuro-Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11060-025-05006-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Adult patients with diffuse lower-grade gliomas (dLGG) show heterogeneous survival outcomes, complicating postoperative treatment planning. Treating all patients early increases the risk of long-term side effects, while delayed treatment may lead to impaired survival. Refinement of prognostic models could optimize timing of treatment. Conventional radiological features are prognostic in dLGG, but MRI could carry more prognostic information. This study aimed to investigate MRI-based radiomics survival models and compare them with clinical models.

Methods: Two clinical survival models were created: a preoperative model (tumor volume) and a full clinical model (tumor volume, extent of resection, tumor subtype). Radiomics features were extracted from preoperative MRI. The dataset was divided into training set and unseen test set (70:30). Model performance was evaluated on test set with Uno's concordance index (c-index). Risk groups were created by the best performing model's predictions.

Results: 207 patients with mutated IDH (mIDH) dLGG were included. The preoperative clinical, full clinical and radiomics models showed c-indexes of 0.70, 0.71 and 0.75 respectively on test set for overall survival. The radiomics model included four features of tumor diameter and tumor heterogeneity. The combined full clinical and radiomics model showed best performance with c-index = 0.79. The survival difference between high- and low-risk patients according to the combined model was both statistically significant and clinically relevant.

Conclusion: Radiomics can capture quantitative prognostic information in patients with dLGG. Combined models show promise of synergetic effects and should be studied further in astrocytoma and oligodendroglioma patients separately for optimal modelling of individual risks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuro-Oncology
Journal of Neuro-Oncology 医学-临床神经学
CiteScore
6.60
自引率
7.70%
发文量
277
审稿时长
3.3 months
期刊介绍: The Journal of Neuro-Oncology is a multi-disciplinary journal encompassing basic, applied, and clinical investigations in all research areas as they relate to cancer and the central nervous system. It provides a single forum for communication among neurologists, neurosurgeons, radiotherapists, medical oncologists, neuropathologists, neurodiagnosticians, and laboratory-based oncologists conducting relevant research. The Journal of Neuro-Oncology does not seek to isolate the field, but rather to focus the efforts of many disciplines in one publication through a format which pulls together these diverse interests. More than any other field of oncology, cancer of the central nervous system requires multi-disciplinary approaches. To alleviate having to scan dozens of journals of cell biology, pathology, laboratory and clinical endeavours, JNO is a periodical in which current, high-quality, relevant research in all aspects of neuro-oncology may be found.
期刊最新文献
Breast cancer spine metastases treated with stereotactic body radiation therapy: patient outcomes and predictors. Simulation tools in neuro-oncological surgery: a scoping review of perioperative and training applications. Education paths in neuro-oncology: combining technical skills with multidisciplinary care. A survey from the AINO (Italian Association for Neuro-Oncology) Youngster Committee. Survival prediction with radiomics for patients with IDH mutated lower-grade glioma. Long-term quality of life and hypothalamic dysfunction after craniopharyngioma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1