Dual role of WNT10A in promoting the malignancy of glioblastoma and remodeling the tumor microenvironment.

IF 16.4 1区 医学 Q1 CLINICAL NEUROLOGY Neuro-oncology Pub Date : 2025-03-18 DOI:10.1093/neuonc/noaf075
Zhiwei Xue, Xuehai Zhang, Bo Mao, Guangjing Mu, Yan Zhang, Junzhi Liu, Jiangli Zhao, Xuchen Liu, Yanfei Sun, Guo Xiang, Hongwei Wang, Wenzhe Xu, Zheng Jiang, Shuai Wang, Rolf Bjerkvig, Jian Wang, Donghai Wang, Xingang Li, Bin Huang, Mingzhi Han
{"title":"Dual role of WNT10A in promoting the malignancy of glioblastoma and remodeling the tumor microenvironment.","authors":"Zhiwei Xue, Xuehai Zhang, Bo Mao, Guangjing Mu, Yan Zhang, Junzhi Liu, Jiangli Zhao, Xuchen Liu, Yanfei Sun, Guo Xiang, Hongwei Wang, Wenzhe Xu, Zheng Jiang, Shuai Wang, Rolf Bjerkvig, Jian Wang, Donghai Wang, Xingang Li, Bin Huang, Mingzhi Han","doi":"10.1093/neuonc/noaf075","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma (GBM) represents a complex ecosystem characterized by numerous interactions between tumor cells and the surrounding tumor microenvironment (TME). Here, we show that WNT10A, a member of the WNT family, plays an important role in GBM growth where its influence is mediated via both autocrine and paracrine pathways thereby stimulating not only the tumor cells but also normal cell types within the tumor microenvironment (TME).</p><p><strong>Methods: </strong>In silico analysis was performed to identify high-expressing WNT family members in GBM. Knockdown and overexpression methods were used to examine the function of WNT10A in GBM cells and in orthotopic GBM xenografts in vivo. Co-immunoprecipitation (Co-IP) was used to confirm receptor binding and chromatin immunoprecipitation (ChIP) was performed to analyze transcriptional activation of downstream genes.</p><p><strong>Results: </strong>WNT10A was found to be highly expressed in GBMs and its knockdown significantly suppressed GBM malignant behavior in vitro and in vivo. Co-IP assays confirmed an interaction between WNT10A and FZD1, which activated the JNK/c-Jun/FOSB signaling pathway and enhanced the transcription of FOSB. Importantly, GBM cells secreted WNT10A into the tumor microenvironment, leading to an activation of the PI3K-AKT pathway in tumor-associated macrophages (TAMs) and the JNK pathway in tumor-associated astrocytes. The latter caused a secretion of tumor-promoting cytokines IL-6, MCP-1, and angiogenin. LGK974, a PORCN inhibitor, inhibited the secretion of WNT10A to suppress the malignant GBM phenotype.</p><p><strong>Conclusion: </strong>Our findings revealed that WNT10A is a critical factor promoting GBM progression through both autocrine and paracrine mechanisms. Thus, our findings provide the foundation for WNT-targeted clinical GBM treatment.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noaf075","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Glioblastoma (GBM) represents a complex ecosystem characterized by numerous interactions between tumor cells and the surrounding tumor microenvironment (TME). Here, we show that WNT10A, a member of the WNT family, plays an important role in GBM growth where its influence is mediated via both autocrine and paracrine pathways thereby stimulating not only the tumor cells but also normal cell types within the tumor microenvironment (TME).

Methods: In silico analysis was performed to identify high-expressing WNT family members in GBM. Knockdown and overexpression methods were used to examine the function of WNT10A in GBM cells and in orthotopic GBM xenografts in vivo. Co-immunoprecipitation (Co-IP) was used to confirm receptor binding and chromatin immunoprecipitation (ChIP) was performed to analyze transcriptional activation of downstream genes.

Results: WNT10A was found to be highly expressed in GBMs and its knockdown significantly suppressed GBM malignant behavior in vitro and in vivo. Co-IP assays confirmed an interaction between WNT10A and FZD1, which activated the JNK/c-Jun/FOSB signaling pathway and enhanced the transcription of FOSB. Importantly, GBM cells secreted WNT10A into the tumor microenvironment, leading to an activation of the PI3K-AKT pathway in tumor-associated macrophages (TAMs) and the JNK pathway in tumor-associated astrocytes. The latter caused a secretion of tumor-promoting cytokines IL-6, MCP-1, and angiogenin. LGK974, a PORCN inhibitor, inhibited the secretion of WNT10A to suppress the malignant GBM phenotype.

Conclusion: Our findings revealed that WNT10A is a critical factor promoting GBM progression through both autocrine and paracrine mechanisms. Thus, our findings provide the foundation for WNT-targeted clinical GBM treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuro-oncology
Neuro-oncology 医学-临床神经学
CiteScore
27.20
自引率
6.30%
发文量
1434
审稿时长
3-8 weeks
期刊介绍: Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field. The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.
期刊最新文献
Histopathological and molecular characteristics of IDH-wildtype glioblastoma without contrast enhancement: implications for clinical outcomes. Dual role of WNT10A in promoting the malignancy of glioblastoma and remodeling the tumor microenvironment. Dual Inhibition of MAPK and TORC1 Signaling Retards Development of Radiation Resistance in Pediatric BRAFV600E Glioma Models. Post-operative Fluid Restriction to Prevent Delayed Hyponatremia after Endoscopic Transsphenoidal Surgery. Germline analysis of an international cohort of pediatric diffuse midline glioma patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1