Deep learning-based segmentation of ultra-low-dose CT images using an optimized nnU-Net model.

IF 9.7 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiologia Medica Pub Date : 2025-03-18 DOI:10.1007/s11547-025-01989-x
Yazdan Salimi, Zahra Mansouri, Chang Sun, Amirhossein Sanaat, Mohammadhossein Yazdanpanah, Hossein Shooli, René Nkoulou, Sana Boudabbous, Habib Zaidi
{"title":"Deep learning-based segmentation of ultra-low-dose CT images using an optimized nnU-Net model.","authors":"Yazdan Salimi, Zahra Mansouri, Chang Sun, Amirhossein Sanaat, Mohammadhossein Yazdanpanah, Hossein Shooli, René Nkoulou, Sana Boudabbous, Habib Zaidi","doi":"10.1007/s11547-025-01989-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Low-dose CT protocols are widely used for emergency imaging, follow-ups, and attenuation correction in hybrid PET/CT and SPECT/CT imaging. However, low-dose CT images often suffer from reduced quality depending on acquisition and patient attenuation parameters. Deep learning (DL)-based organ segmentation models are typically trained on high-quality images, with limited dedicated models for noisy CT images. This study aimed to develop a DL pipeline for organ segmentation on ultra-low-dose CT images.</p><p><strong>Materials and methods: </strong>274 CT raw datasets were reconstructed using Siemens ReconCT software with ADMIRE iterative algorithm, generating full-dose (FD-CT) and simulated low-dose (LD-CT) images at 1%, 2%, 5%, and 10% of the original tube current. Existing FD-nnU-Net models segmented 22 organs on FD-CT images, serving as reference masks for training new LD-nnU-Net models using LD-CT images. Three models were trained for bony tissue (6 organs), soft-tissue (15 organs), and body contour segmentation. The segmented masks from LD-CT were compared to FD-CT as standard of reference. External datasets with actual LD-CT images were also segmented and compared.</p><p><strong>Results: </strong>FD-nnU-Net performance declined with reduced radiation dose, especially below 10% (5 mAs). LD-nnU-Net achieved average Dice scores of 0.937 ± 0.049 (bony tissues), 0.905 ± 0.117 (soft-tissues), and 0.984 ± 0.023 (body contour). LD models outperformed FD models on external datasets.</p><p><strong>Conclusion: </strong>Conventional FD-nnU-Net models performed poorly on LD-CT images. Dedicated LD-nnU-Net models demonstrated superior performance across cross-validation and external evaluations, enabling accurate segmentation of ultra-low-dose CT images. The trained models are available on our GitHub page.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-025-01989-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Low-dose CT protocols are widely used for emergency imaging, follow-ups, and attenuation correction in hybrid PET/CT and SPECT/CT imaging. However, low-dose CT images often suffer from reduced quality depending on acquisition and patient attenuation parameters. Deep learning (DL)-based organ segmentation models are typically trained on high-quality images, with limited dedicated models for noisy CT images. This study aimed to develop a DL pipeline for organ segmentation on ultra-low-dose CT images.

Materials and methods: 274 CT raw datasets were reconstructed using Siemens ReconCT software with ADMIRE iterative algorithm, generating full-dose (FD-CT) and simulated low-dose (LD-CT) images at 1%, 2%, 5%, and 10% of the original tube current. Existing FD-nnU-Net models segmented 22 organs on FD-CT images, serving as reference masks for training new LD-nnU-Net models using LD-CT images. Three models were trained for bony tissue (6 organs), soft-tissue (15 organs), and body contour segmentation. The segmented masks from LD-CT were compared to FD-CT as standard of reference. External datasets with actual LD-CT images were also segmented and compared.

Results: FD-nnU-Net performance declined with reduced radiation dose, especially below 10% (5 mAs). LD-nnU-Net achieved average Dice scores of 0.937 ± 0.049 (bony tissues), 0.905 ± 0.117 (soft-tissues), and 0.984 ± 0.023 (body contour). LD models outperformed FD models on external datasets.

Conclusion: Conventional FD-nnU-Net models performed poorly on LD-CT images. Dedicated LD-nnU-Net models demonstrated superior performance across cross-validation and external evaluations, enabling accurate segmentation of ultra-low-dose CT images. The trained models are available on our GitHub page.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiologia Medica
Radiologia Medica 医学-核医学
CiteScore
14.10
自引率
7.90%
发文量
133
审稿时长
4-8 weeks
期刊介绍: Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.
期刊最新文献
Deep learning reconstruction for accelerated 3-D magnetic resonance cholangiopancreatography. Deep learning-based segmentation of ultra-low-dose CT images using an optimized nnU-Net model. Transvenous pulmonary chemoembolization and microwave ablation for lung metastases from breast cancer: a propensity score matching analysis. Comprehensive cohort study: computer tomography-guided high-dose rate brachytherapy as metastasis-directed therapy for liver metastases from colorectal cancer in repeat oligoprogression. Accuracy of abbreviated magnetic resonance compared to 3-dimensional mammography and ultrasound in early detection of breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1