Predicting precursors of plant specialized metabolites using DeepMol automated machine learning.

IF 1.8 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Integrative Bioinformatics Pub Date : 2025-03-20 eCollection Date: 2025-06-01 DOI:10.1515/jib-2024-0050
João Capela, João Cheixo, Dick de Ridder, Oscar Dias, Miguel Rocha
{"title":"Predicting precursors of plant specialized metabolites using DeepMol automated machine learning.","authors":"João Capela, João Cheixo, Dick de Ridder, Oscar Dias, Miguel Rocha","doi":"10.1515/jib-2024-0050","DOIUrl":null,"url":null,"abstract":"<p><p>Plants produce specialized metabolites, which play critical roles in defending against biotic and abiotic stresses. Due to their chemical diversity and bioactivity, these compounds have significant economic implications, particularly in the pharmaceutical and agrotechnology sectors. Despite their importance, the biosynthetic pathways of these metabolites remain largely unresolved. Automating the prediction of their precursors, derived from primary metabolism, is essential for accelerating pathway discovery. Using DeepMol's automated machine learning engine, we found that regularized linear classifiers offer optimal, accurate, and interpretable models for this task, outperforming state-of-the-art models while providing chemical insights into their predictions. The pipeline and models are available at the repository: https://github.com/jcapels/SMPrecursorPredictor.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12569576/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2024-0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plants produce specialized metabolites, which play critical roles in defending against biotic and abiotic stresses. Due to their chemical diversity and bioactivity, these compounds have significant economic implications, particularly in the pharmaceutical and agrotechnology sectors. Despite their importance, the biosynthetic pathways of these metabolites remain largely unresolved. Automating the prediction of their precursors, derived from primary metabolism, is essential for accelerating pathway discovery. Using DeepMol's automated machine learning engine, we found that regularized linear classifiers offer optimal, accurate, and interpretable models for this task, outperforming state-of-the-art models while providing chemical insights into their predictions. The pipeline and models are available at the repository: https://github.com/jcapels/SMPrecursorPredictor.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用DeepMol自动机器学习预测植物专门代谢物的前体。
植物产生的特殊代谢物在抵御生物和非生物压力方面发挥着关键作用。由于其化学多样性和生物活性,这些化合物具有重要的经济意义,尤其是在制药和农业技术领域。尽管这些代谢物非常重要,但其生物合成途径在很大程度上仍未得到解决。自动预测来自初级代谢的前体对于加速途径发现至关重要。利用 DeepMol 的自动机器学习引擎,我们发现正则化线性分类器为这项任务提供了最佳、准确和可解释的模型,其性能优于最先进的模型,同时还能为其预测提供化学见解。管道和模型可在 https://github.com/jcapels/SMPrecursorPredictor 存储库中获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
期刊最新文献
Functional and evolutionary characteristics of human genes encoding cell surface receptors involved in the regulation of appetite. Streamlining feature elaboration and statistics analysis in metabolomics: the GetFeatistics R-package. Colon cancer survival prediction from gland shapes within histology slides using deep learning. Editorial - 20 years Journal of Integrative Bioinformatics. Sustainable software development in science - insights from 20 years of Vanted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1