Gary Cheung, Ruth Teh, Eamon Merrick, Nicole Williams, Dawn M Guthrie
{"title":"The Development of a Model to Predict Cognitive Decline Within 12 Months in Home Care Clients.","authors":"Gary Cheung, Ruth Teh, Eamon Merrick, Nicole Williams, Dawn M Guthrie","doi":"10.1111/jocn.17726","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To develop and validate a model to predict cognitive decline within 12 months for home care clients without a diagnosis of dementia.</p><p><strong>Design: </strong>We included all adults aged ≥ 18 years who had at least two interRAI Home Care assessments within 12 months, no diagnosis of dementia and a baseline Cognitive Performance Scale score ≤ 1. The sample was randomly split into a derivation cohort (75%) and a validation cohort (25%). Significant cognitive decline was defined as an increase (deterioration) in Cognitive Performance Scale scores from '0' or '1' at baseline to a score of ≥ 2 at the follow-up assessment.</p><p><strong>Methods: </strong>Using the derivation cohort, a multivariable logistic regression model was used to predict cognitive decline within 12 months. Covariates included demographics, disease diagnoses, sensory and communication impairments, health conditions, physical and social functioning, service utilisation, informal caregiver status and eight interRAI-derived health index scales. The predicted probability of cognitive decline was calculated for each person in the validation cohort. The c-statistic was used to assess the model's discriminative ability. This study followed the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guidelines.</p><p><strong>Results: </strong>A total of 6796 individuals (median age: 82; female: 60.4%) were split into a derivation cohort (n = 5098) and a validation cohort (n = 1698). Logistic regression models using the derivation cohort resulted in a c-statistic of 0.70 (95% CI 0.70, 0.73). The final regression model (including 21 main effects and 8 significant interaction terms) was applied to the validation cohort, resulting in a c-statistic of 0.69 (95% CI 0.66, 0.72).</p><p><strong>Conclusion: </strong>interRAI data can be used to develop a model for identifying individuals at risk of cognitive decline. Identifying this group enables proactive clinical interventions and care planning, potentially improving their outcomes. While these results are promising, the model's moderate discriminative ability highlights opportunities for improvement.</p>","PeriodicalId":50236,"journal":{"name":"Journal of Clinical Nursing","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Nursing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jocn.17726","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NURSING","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To develop and validate a model to predict cognitive decline within 12 months for home care clients without a diagnosis of dementia.
Design: We included all adults aged ≥ 18 years who had at least two interRAI Home Care assessments within 12 months, no diagnosis of dementia and a baseline Cognitive Performance Scale score ≤ 1. The sample was randomly split into a derivation cohort (75%) and a validation cohort (25%). Significant cognitive decline was defined as an increase (deterioration) in Cognitive Performance Scale scores from '0' or '1' at baseline to a score of ≥ 2 at the follow-up assessment.
Methods: Using the derivation cohort, a multivariable logistic regression model was used to predict cognitive decline within 12 months. Covariates included demographics, disease diagnoses, sensory and communication impairments, health conditions, physical and social functioning, service utilisation, informal caregiver status and eight interRAI-derived health index scales. The predicted probability of cognitive decline was calculated for each person in the validation cohort. The c-statistic was used to assess the model's discriminative ability. This study followed the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) reporting guidelines.
Results: A total of 6796 individuals (median age: 82; female: 60.4%) were split into a derivation cohort (n = 5098) and a validation cohort (n = 1698). Logistic regression models using the derivation cohort resulted in a c-statistic of 0.70 (95% CI 0.70, 0.73). The final regression model (including 21 main effects and 8 significant interaction terms) was applied to the validation cohort, resulting in a c-statistic of 0.69 (95% CI 0.66, 0.72).
Conclusion: interRAI data can be used to develop a model for identifying individuals at risk of cognitive decline. Identifying this group enables proactive clinical interventions and care planning, potentially improving their outcomes. While these results are promising, the model's moderate discriminative ability highlights opportunities for improvement.
期刊介绍:
The Journal of Clinical Nursing (JCN) is an international, peer reviewed, scientific journal that seeks to promote the development and exchange of knowledge that is directly relevant to all spheres of nursing practice. The primary aim is to promote a high standard of clinically related scholarship which advances and supports the practice and discipline of nursing. The Journal also aims to promote the international exchange of ideas and experience that draws from the different cultures in which practice takes place. Further, JCN seeks to enrich insight into clinical need and the implications for nursing intervention and models of service delivery. Emphasis is placed on promoting critical debate on the art and science of nursing practice.
JCN is essential reading for anyone involved in nursing practice, whether clinicians, researchers, educators, managers, policy makers, or students. The development of clinical practice and the changing patterns of inter-professional working are also central to JCN''s scope of interest. Contributions are welcomed from other health professionals on issues that have a direct impact on nursing practice.
We publish high quality papers from across the methodological spectrum that make an important and novel contribution to the field of clinical nursing (regardless of where care is provided), and which demonstrate clinical application and international relevance.