Baoguang Li, Zhenzhen Qu, Wenjuan Wu, Weiping Wang
{"title":"Genotypic and clinical phenotypic analysis of DEPDC5 gene mutations.","authors":"Baoguang Li, Zhenzhen Qu, Wenjuan Wu, Weiping Wang","doi":"10.1007/s10048-025-00818-7","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations in the DEPDC5 gene are inherited in an autosomal dominant manner and can lead to various clinical phenotypes, including focal seizures. While numerous case reports on DEPDC5 mutations exist, functional validation studies remain scarce. We analyzed seven cases of epilepsy or developmental disorders caused by DEPDC5 mutations, summarizing their clinical manifestations and conducting genetic analysis of the mutation sites. The age of onset in the seven patients ranged from 2 months to 4 years. Six mutation sites were identified, including three nonsense mutations: c.1443del (p.C481X), c.2512 C > T (p.R838X), and c.2620 C > T (p.R874X); one missense mutation: c.1140 C > A (p.F380L); and two splice-site mutations: c.2802-13 C > G (splicing) and c.4034-2 A > G (splicing). Among these, c.2512 C > T (p.R838X) and c.2620 C > T (p.R874X) had been previously reported, while the remaining mutations were novel. Minigene experiments confirmed that the c.4034-2 A > G mutation resulted in a slightly truncated protein.Focal seizures were the predominant symptom in six cases. Among the four patients with nonsense mutations, three (Cases 2, 4, and 5) exhibited drug-resistant epilepsy. Four out of seven patients responded effectively to lacosamide treatment. DEPDC5 mutations can cause focal seizures, with truncating mutations associated with more severe symptoms. Lacosamide may offer better therapeutic outcomes. The intronic mutation c.463 + 4 A > G (splicing) led to protein truncation and was determined to be pathogenic.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":"26 1","pages":"36"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10048-025-00818-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mutations in the DEPDC5 gene are inherited in an autosomal dominant manner and can lead to various clinical phenotypes, including focal seizures. While numerous case reports on DEPDC5 mutations exist, functional validation studies remain scarce. We analyzed seven cases of epilepsy or developmental disorders caused by DEPDC5 mutations, summarizing their clinical manifestations and conducting genetic analysis of the mutation sites. The age of onset in the seven patients ranged from 2 months to 4 years. Six mutation sites were identified, including three nonsense mutations: c.1443del (p.C481X), c.2512 C > T (p.R838X), and c.2620 C > T (p.R874X); one missense mutation: c.1140 C > A (p.F380L); and two splice-site mutations: c.2802-13 C > G (splicing) and c.4034-2 A > G (splicing). Among these, c.2512 C > T (p.R838X) and c.2620 C > T (p.R874X) had been previously reported, while the remaining mutations were novel. Minigene experiments confirmed that the c.4034-2 A > G mutation resulted in a slightly truncated protein.Focal seizures were the predominant symptom in six cases. Among the four patients with nonsense mutations, three (Cases 2, 4, and 5) exhibited drug-resistant epilepsy. Four out of seven patients responded effectively to lacosamide treatment. DEPDC5 mutations can cause focal seizures, with truncating mutations associated with more severe symptoms. Lacosamide may offer better therapeutic outcomes. The intronic mutation c.463 + 4 A > G (splicing) led to protein truncation and was determined to be pathogenic.
期刊介绍:
Neurogenetics publishes findings that contribute to a better understanding of the genetic basis of normal and abnormal function of the nervous system. Neurogenetic disorders are the main focus of the journal. Neurogenetics therefore includes findings in humans and other organisms that help understand neurological disease mechanisms and publishes papers from many different fields such as biophysics, cell biology, human genetics, neuroanatomy, neurochemistry, neurology, neuropathology, neurosurgery and psychiatry.
All papers submitted to Neurogenetics should be of sufficient immediate importance to justify urgent publication. They should present new scientific results. Data merely confirming previously published findings are not acceptable.