Evaluating knowledge fusion models on detecting adverse drug events in text.

PLOS digital health Pub Date : 2025-03-18 eCollection Date: 2025-03-01 DOI:10.1371/journal.pdig.0000468
Philipp Wegner, Holger Fröhlich, Sumit Madan
{"title":"Evaluating knowledge fusion models on detecting adverse drug events in text.","authors":"Philipp Wegner, Holger Fröhlich, Sumit Madan","doi":"10.1371/journal.pdig.0000468","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting adverse drug events (ADE) of drugs that are already available on the market is an essential part of the pharmacovigilance work conducted by both medical regulatory bodies and the pharmaceutical industry. Concerns regarding drug safety and economic interests serve as motivating factors for the efforts to identify ADEs. Hereby, social media platforms play an important role as a valuable source of reports on ADEs, particularly through collecting posts discussing adverse events associated with specific drugs. We aim with our study to assess the effectiveness of knowledge fusion approaches in combination with transformer-based NLP models to extract ADE mentions from diverse datasets, for instance, texts from Twitter, websites like askapatient.com, and drug labels. The extraction task is formulated as a named entity recognition (NER) problem. The proposed methodology involves applying fusion learning methods to enhance the performance of transformer-based language models with additional contextual knowledge from ontologies or knowledge graphs. Additionally, the study introduces a multi-modal architecture that combines transformer-based language models with graph attention networks (GAT) to identify ADE spans in textual data. A multi-modality model consisting of the ERNIE model with knowledge on drugs reached an F1-score of 71.84% on CADEC corpus. Additionally, a combination of a graph attention network with BERT resulted in an F1-score of 65.16% on SMM4H corpus. Impressively, the same model achieved an F1-score of 72.50% on the PsyTAR corpus, 79.54% on the ADE corpus, and 94.15% on the TAC corpus. Except for the CADEC corpus, the knowledge fusion models consistently outperformed the baseline model, BERT. Our study demonstrates the significance of context knowledge in improving the performance of knowledge fusion models for detecting ADEs from various types of textual data.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 3","pages":"e0000468"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11918363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting adverse drug events (ADE) of drugs that are already available on the market is an essential part of the pharmacovigilance work conducted by both medical regulatory bodies and the pharmaceutical industry. Concerns regarding drug safety and economic interests serve as motivating factors for the efforts to identify ADEs. Hereby, social media platforms play an important role as a valuable source of reports on ADEs, particularly through collecting posts discussing adverse events associated with specific drugs. We aim with our study to assess the effectiveness of knowledge fusion approaches in combination with transformer-based NLP models to extract ADE mentions from diverse datasets, for instance, texts from Twitter, websites like askapatient.com, and drug labels. The extraction task is formulated as a named entity recognition (NER) problem. The proposed methodology involves applying fusion learning methods to enhance the performance of transformer-based language models with additional contextual knowledge from ontologies or knowledge graphs. Additionally, the study introduces a multi-modal architecture that combines transformer-based language models with graph attention networks (GAT) to identify ADE spans in textual data. A multi-modality model consisting of the ERNIE model with knowledge on drugs reached an F1-score of 71.84% on CADEC corpus. Additionally, a combination of a graph attention network with BERT resulted in an F1-score of 65.16% on SMM4H corpus. Impressively, the same model achieved an F1-score of 72.50% on the PsyTAR corpus, 79.54% on the ADE corpus, and 94.15% on the TAC corpus. Except for the CADEC corpus, the knowledge fusion models consistently outperformed the baseline model, BERT. Our study demonstrates the significance of context knowledge in improving the performance of knowledge fusion models for detecting ADEs from various types of textual data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating fairness of machine learning prediction of prolonged wait times in Emergency Department with Interpretable eXtreme gradient boosting. Leveraging social media data to study disease and treatment characteristics of Hodgkin's lymphoma Using Natural Language Processing methods. Evaluating knowledge fusion models on detecting adverse drug events in text. Maternal information-seeking on pregnancy-induced hypertension and associated factors among pregnant women, in low resource country, A cross-sectional study design. What makes clinical machine learning fair? A practical ethics framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1