Replace2Self: Self-Supervised Denoising based on Voxel Replacing and Image Mixing for Diffusion MRI.

Linhai Wu, Lihui Wang, Zeyu Deng, Yuemin Zhu, Hongjiang Wei
{"title":"Replace2Self: Self-Supervised Denoising based on Voxel Replacing and Image Mixing for Diffusion MRI.","authors":"Linhai Wu, Lihui Wang, Zeyu Deng, Yuemin Zhu, Hongjiang Wei","doi":"10.1109/TMI.2025.3552611","DOIUrl":null,"url":null,"abstract":"<p><p>Low signal to noise ratio (SNR) remains one of the limitations of diffusion weighted (DW) imaging. How to suppress the influence of noise on the subsequent analysis about the tissue microstructure is still challenging. This work proposed a novel self-supervised learning model, Replace2Self, to effectively reduce spatial correlated noise in DW images. Specifically, a voxel replacement strategy based on similar block matching in Q-space was proposed to destroy the correlations of noise in DW image along one diffusion gradient direction. To alleviate the signal gap caused by the voxel replacement, an image mixing strategy based on complementary mask was designed to generate two different noisy DW images. After that, these two noisy DW images were taken as input, and the non-correlated noisy DWimage after voxel replacement was taken as learning target, a denoising network was trained for denoising. To promote the denoising performance, a complementary mask mixing consistency loss and an inverse replacement regularization loss were also proposed. Through the comparisons against several existing DW image denoising methods on extensive simulation data with different noise distributions, noise levels and b-values, as well as the acquisition datasets and the ablation experiments, we verified the effectiveness of the proposed method. Regardless of the noise distribution and noise level, the proposed method achieved the highest PSNR, which was at least 1.9% higher than the suboptimal method when the noise level reaches 10%. Furthermore, our method has superior generalization ability due to the use of the proposed strategies.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2025.3552611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low signal to noise ratio (SNR) remains one of the limitations of diffusion weighted (DW) imaging. How to suppress the influence of noise on the subsequent analysis about the tissue microstructure is still challenging. This work proposed a novel self-supervised learning model, Replace2Self, to effectively reduce spatial correlated noise in DW images. Specifically, a voxel replacement strategy based on similar block matching in Q-space was proposed to destroy the correlations of noise in DW image along one diffusion gradient direction. To alleviate the signal gap caused by the voxel replacement, an image mixing strategy based on complementary mask was designed to generate two different noisy DW images. After that, these two noisy DW images were taken as input, and the non-correlated noisy DWimage after voxel replacement was taken as learning target, a denoising network was trained for denoising. To promote the denoising performance, a complementary mask mixing consistency loss and an inverse replacement regularization loss were also proposed. Through the comparisons against several existing DW image denoising methods on extensive simulation data with different noise distributions, noise levels and b-values, as well as the acquisition datasets and the ablation experiments, we verified the effectiveness of the proposed method. Regardless of the noise distribution and noise level, the proposed method achieved the highest PSNR, which was at least 1.9% higher than the suboptimal method when the noise level reaches 10%. Furthermore, our method has superior generalization ability due to the use of the proposed strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Replace2Self: Self-Supervised Denoising based on Voxel Replacing and Image Mixing for Diffusion MRI. Table of Contents Blood Oxygenation Quantification in Multispectral Photoacoustic Tomography Using A Convex Cone Approach. DenseFormer-MoE: A Dense Transformer Foundation Model with Mixture of Experts for Multi-Task Brain Image Analysis. Speckle Denoising of Dynamic Contrast-enhanced Ultrasound using Low-rank Tensor Decomposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1