Kristen E. Pauken, Omar Alhalabi, Sangeeta Goswami, Padmanee Sharma
{"title":"Neoadjuvant immune checkpoint therapy: Enabling insights into fundamental human immunology and clinical benefit","authors":"Kristen E. Pauken, Omar Alhalabi, Sangeeta Goswami, Padmanee Sharma","doi":"10.1016/j.ccell.2025.03.005","DOIUrl":null,"url":null,"abstract":"While immune checkpoint therapy (ICT) has revolutionized cancer treatment, most patients with advanced disease fail to achieve durable benefit. To address this challenge, it is essential to integrate mechanistic research with clinical studies to: (1) understand response mechanisms, (2) identify patient-specific resistance pathways, (3) develop biomarkers for patient selection, and (4) design novel therapies to overcome resistance. We propose that incorporating “direct-in-patient” studies into clinical trials is crucial for bridging the gap between fundamental science and clinical oncology. In this review, we first highlight recent clinical success of ICT in the neoadjuvant setting, where treatment is given in earlier disease stages to improve outcomes. We then explore how neoadjuvant clinical trials could be utilized to drive mechanistic laboratory-based investigations. Finally, we discuss novel scientific concepts that will potentially aid in overcoming resistance to ICT, which will require future clinical trials to understand their impact on human immune responses.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"91 1","pages":""},"PeriodicalIF":48.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2025.03.005","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
While immune checkpoint therapy (ICT) has revolutionized cancer treatment, most patients with advanced disease fail to achieve durable benefit. To address this challenge, it is essential to integrate mechanistic research with clinical studies to: (1) understand response mechanisms, (2) identify patient-specific resistance pathways, (3) develop biomarkers for patient selection, and (4) design novel therapies to overcome resistance. We propose that incorporating “direct-in-patient” studies into clinical trials is crucial for bridging the gap between fundamental science and clinical oncology. In this review, we first highlight recent clinical success of ICT in the neoadjuvant setting, where treatment is given in earlier disease stages to improve outcomes. We then explore how neoadjuvant clinical trials could be utilized to drive mechanistic laboratory-based investigations. Finally, we discuss novel scientific concepts that will potentially aid in overcoming resistance to ICT, which will require future clinical trials to understand their impact on human immune responses.
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.