The tolerance mechanism of diarrhetic shellfish toxins mediated by the extracellular regulated protein kinase (ERK) pathway in the mussel Perna viridis
Jin-jin Lv, Yu-jie Liu, Yan-hang Mo, Li-yan Deng, Yang Liu, Hong-ye Li, Li Zhang, Wei-dong Yang
{"title":"The tolerance mechanism of diarrhetic shellfish toxins mediated by the extracellular regulated protein kinase (ERK) pathway in the mussel Perna viridis","authors":"Jin-jin Lv, Yu-jie Liu, Yan-hang Mo, Li-yan Deng, Yang Liu, Hong-ye Li, Li Zhang, Wei-dong Yang","doi":"10.1016/j.jhazmat.2025.138006","DOIUrl":null,"url":null,"abstract":"Diarrheic shellfish toxins (DSTs) are a class of lipophilic algal toxins that accumulate excessively in bivalves following harmful algal blooms. Bivalves exhibit tolerance to DSTs, which make people ignore or underestimate the risk of DSTs, leading to the occurrence of seafood poisoning incidents. However, the tolerance mechanism remains unclear in bivalves. We investigated the role of extracellular-regulated protein kinase (ERK) in DSTs tolerance, observed that the ERK inhibitor PD98059 exacerbated damage of DSTs to the digestive tubules. PD98059 induced the TUNEL fluorescence intensity, and caspase-3 activity inhibited by DSTs were restored to the control. PD98059 enhanced the fluorescence intensity of extracellular Ca-AM and increased the accumulation of esterified DSTs. Transcriptome analysis revealed that PD98059 affected the genes expression related to apoptosis, ABC transporters, and lipid metabolism. qPCR analysis demonstrated that PD98059 down-regulated the DSTs-induced <em>iap</em> and <em>ABCC10</em> (<em>p</em> = 0.063), and up-regulated <em>ABCB1-like1</em>, <em>ABCC1</em>, <em>ABCC1-like1</em>, and <em>ABCC9</em>. Molecular docking suggested that ABCC10 exhibited high affinity for esterified okadaic acid. Overall, ERK plays a crucial role in DSTs tolerance by regulating the anti-apoptotic system and ABC transporters in bivalves. Our study is of great significance to understand the tolerance mechanism in bivalves and the safety risk caused by DSTs.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"88 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138006","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diarrheic shellfish toxins (DSTs) are a class of lipophilic algal toxins that accumulate excessively in bivalves following harmful algal blooms. Bivalves exhibit tolerance to DSTs, which make people ignore or underestimate the risk of DSTs, leading to the occurrence of seafood poisoning incidents. However, the tolerance mechanism remains unclear in bivalves. We investigated the role of extracellular-regulated protein kinase (ERK) in DSTs tolerance, observed that the ERK inhibitor PD98059 exacerbated damage of DSTs to the digestive tubules. PD98059 induced the TUNEL fluorescence intensity, and caspase-3 activity inhibited by DSTs were restored to the control. PD98059 enhanced the fluorescence intensity of extracellular Ca-AM and increased the accumulation of esterified DSTs. Transcriptome analysis revealed that PD98059 affected the genes expression related to apoptosis, ABC transporters, and lipid metabolism. qPCR analysis demonstrated that PD98059 down-regulated the DSTs-induced iap and ABCC10 (p = 0.063), and up-regulated ABCB1-like1, ABCC1, ABCC1-like1, and ABCC9. Molecular docking suggested that ABCC10 exhibited high affinity for esterified okadaic acid. Overall, ERK plays a crucial role in DSTs tolerance by regulating the anti-apoptotic system and ABC transporters in bivalves. Our study is of great significance to understand the tolerance mechanism in bivalves and the safety risk caused by DSTs.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.