High-resolution tunnelling spectroscopy of fractional quantum Hall states

IF 18.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2025-03-20 DOI:10.1038/s41567-025-02830-y
Yuwen Hu, Yen-Chen Tsui, Minhao He, Umut Kamber, Taige Wang, Amir S. Mohammadi, Kenji Watanabe, Takashi Taniguchi, Zlatko Papić, Michael P. Zaletel, Ali Yazdani
{"title":"High-resolution tunnelling spectroscopy of fractional quantum Hall states","authors":"Yuwen Hu, Yen-Chen Tsui, Minhao He, Umut Kamber, Taige Wang, Amir S. Mohammadi, Kenji Watanabe, Takashi Taniguchi, Zlatko Papić, Michael P. Zaletel, Ali Yazdani","doi":"10.1038/s41567-025-02830-y","DOIUrl":null,"url":null,"abstract":"Strong interactions between electrons in two-dimensional systems in the presence of a high magnetic field give rise to fractional quantum Hall states that host quasiparticles with a fractional charge and fractional exchange statistics. Here we demonstrate high-resolution scanning tunnelling microscopy and spectroscopy of fractional quantum Hall states in ultra-clean Bernal-stacked bilayer graphene devices. Spectroscopy measurements show sharp excitations that have been predicted to emerge when electrons fractionalize into bound states of quasiparticles. We found energy gaps for candidate non-abelian fractional states that are larger by a factor of five than those in other related systems, for example, semiconductor heterostructures, and this suggests that bilayer graphene is an ideal platform for manipulating these quasiparticles and for creating topological quantum bits. We also found previously unobserved fractional states in our very clean graphene samples. Local probes of quantum Hall states are still in their infancy. Now scanning tunnelling measurements were used to extract the energy gap of candidate non-Abelian fractional states, which are found to be encouragingly large for applications.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 5","pages":"716-723"},"PeriodicalIF":18.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-025-02830-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Strong interactions between electrons in two-dimensional systems in the presence of a high magnetic field give rise to fractional quantum Hall states that host quasiparticles with a fractional charge and fractional exchange statistics. Here we demonstrate high-resolution scanning tunnelling microscopy and spectroscopy of fractional quantum Hall states in ultra-clean Bernal-stacked bilayer graphene devices. Spectroscopy measurements show sharp excitations that have been predicted to emerge when electrons fractionalize into bound states of quasiparticles. We found energy gaps for candidate non-abelian fractional states that are larger by a factor of five than those in other related systems, for example, semiconductor heterostructures, and this suggests that bilayer graphene is an ideal platform for manipulating these quasiparticles and for creating topological quantum bits. We also found previously unobserved fractional states in our very clean graphene samples. Local probes of quantum Hall states are still in their infancy. Now scanning tunnelling measurements were used to extract the energy gap of candidate non-Abelian fractional states, which are found to be encouragingly large for applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分数量子霍尔态的高分辨率隧穿光谱
二维系统中存在强磁场时,电子之间的强相互作用会产生分数量子霍尔态,其宿主准粒子具有分数电荷和分数交换统计量。在这里,我们展示了在超干净伯纳堆叠双层石墨烯器件中分数量子霍尔态的高分辨率扫描隧道显微镜和光谱。光谱学测量表明,当电子分裂成准粒子的束缚态时,预计会出现尖锐的激发。我们发现候选非阿贝尔分数态的能隙比其他相关系统(例如半导体异质结构)中的能隙大五倍,这表明双层石墨烯是操纵这些准粒子和创建拓扑量子比特的理想平台。我们还在非常干净的石墨烯样品中发现了以前未观察到的分数态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Fusion and fission of particle-like chiral nematic vortex knots Optimal operation of hole spin qubits Temporal anti-parity–time symmetry in diffusive transport Love hertz Level the slopes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1