{"title":"Deep-Penetrating and High-Resolution Continuous-Wave Nonlinear Microscopy Based on Homologous Dual-Emission Upconversion Adaptive Optics","authors":"Jing Yao, Zhipeng Yu, Yufeng Gao, Baoju Wang, Zhiyuan Wang, Tianting Zhong, Binxiong Pan, Huanhao Li, Hui Hui, Wei Zheng, Qiuqiang Zhan, Puxiang Lai","doi":"10.1021/acs.nanolett.5c01030","DOIUrl":null,"url":null,"abstract":"Lanthanide-doped upconversion nanoparticles (UCNPs) are emerging as innovative nonlinear probes in biomedical studies, offering the unique capability to simultaneously emit both visible (VIS) and near-infrared (NIR) photons under continuous-wave (CW) NIR excitation. However, deep-tissue high-resolution imaging remains challenging due to the trade-off between VIS emission (higher resolution, limited penetration) and NIR emission (deeper penetration, lower resolution). Here we present a CW nonlinear microscopy based on homologous dual-emission upconversion adaptive optics, leveraging Tm<sup>3+</sup>/Yb<sup>3+</sup> co-doped UCNPs’ dual 455 nm/800 nm emission: the 800 nm emission for aberration measurement (guide-star) in deep tissues and the 455 nm emission for high-resolution imaging at matching depths. Using a home-built nonlinear laser scanning microscope with a 975 nm CW laser, we achieved near-diffraction-limited imaging (480 nm laterally) at a 500 μm depth in the mouse brain environment with significant optical aberrations. This strategy expands UCNPs’ applications and innovates the exploration of deep-tissue optical features.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"14 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01030","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) are emerging as innovative nonlinear probes in biomedical studies, offering the unique capability to simultaneously emit both visible (VIS) and near-infrared (NIR) photons under continuous-wave (CW) NIR excitation. However, deep-tissue high-resolution imaging remains challenging due to the trade-off between VIS emission (higher resolution, limited penetration) and NIR emission (deeper penetration, lower resolution). Here we present a CW nonlinear microscopy based on homologous dual-emission upconversion adaptive optics, leveraging Tm3+/Yb3+ co-doped UCNPs’ dual 455 nm/800 nm emission: the 800 nm emission for aberration measurement (guide-star) in deep tissues and the 455 nm emission for high-resolution imaging at matching depths. Using a home-built nonlinear laser scanning microscope with a 975 nm CW laser, we achieved near-diffraction-limited imaging (480 nm laterally) at a 500 μm depth in the mouse brain environment with significant optical aberrations. This strategy expands UCNPs’ applications and innovates the exploration of deep-tissue optical features.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.