Yifan Liu, Miao Li, Zhenxia Zhao, Zhongxing Zhao, Min Li
{"title":"A Rapid and Sensitive SERS-Based Au/MIL-125(Ti) Biosensor for Hyperuricemia Diagnosis via Saliva Analysis","authors":"Yifan Liu, Miao Li, Zhenxia Zhao, Zhongxing Zhao, Min Li","doi":"10.1021/acs.analchem.4c05499","DOIUrl":null,"url":null,"abstract":"An Au/MIL-125(Ti) nanocomposite was developed as a novel Raman-based biosensor platform for the noninvasive evaluation of uric acid (UA) levels in saliva. The intensity ratio (<i>I</i><sub>497</sub>/<i>I</i><sub>1648</sub>) for the Raman spectrum of uric acid was found to exhibit a quantitative correlation with uric acid concentration upon its adsorption onto MIL-125(Ti). This innovative method achieves an impressive limit of detection (LOD) of 0.01 μM with consistent performance in physiological media. This platform shows a wide linear detection range from 50 μM to 5000 μM, showcasing its sensitivity and versatility. Furthermore, this biosensor facilitates rapid UA detection in saliva samples and can distinguish clearly hyperuricemia sufferers from healthy controls within a remarkable time frame of only 90 s without complicated pretreatments, highlighting its great potential for real-time diagnostics. This research underscores the transformative potential of composite biosensors based on metal–organic frameworks (MOFs) for biomarker sensing applications, paving the way for future innovations in noninvasive diagnostic technologies.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"90 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05499","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An Au/MIL-125(Ti) nanocomposite was developed as a novel Raman-based biosensor platform for the noninvasive evaluation of uric acid (UA) levels in saliva. The intensity ratio (I497/I1648) for the Raman spectrum of uric acid was found to exhibit a quantitative correlation with uric acid concentration upon its adsorption onto MIL-125(Ti). This innovative method achieves an impressive limit of detection (LOD) of 0.01 μM with consistent performance in physiological media. This platform shows a wide linear detection range from 50 μM to 5000 μM, showcasing its sensitivity and versatility. Furthermore, this biosensor facilitates rapid UA detection in saliva samples and can distinguish clearly hyperuricemia sufferers from healthy controls within a remarkable time frame of only 90 s without complicated pretreatments, highlighting its great potential for real-time diagnostics. This research underscores the transformative potential of composite biosensors based on metal–organic frameworks (MOFs) for biomarker sensing applications, paving the way for future innovations in noninvasive diagnostic technologies.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.