Proximal and Remote Hydrocarboxylation of Alkenes with Carbon Dioxide Enabled by Nickel-Catalyzed Hydrogen Atom Transfer

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-03-20 DOI:10.1002/anie.202424790
Rong-De He, Yixin Lu
{"title":"Proximal and Remote Hydrocarboxylation of Alkenes with Carbon Dioxide Enabled by Nickel-Catalyzed Hydrogen Atom Transfer","authors":"Rong-De He, Yixin Lu","doi":"10.1002/anie.202424790","DOIUrl":null,"url":null,"abstract":"The utilization of carbon dioxide and alkenes as feedstocks for the synthesis of carboxylic acids holds great significance in the realm of sustainable chemistry. Nonetheless, achieving selective C−H bond carboxylation of alkenes with broad applicability has long been a challenging task. Herein, we present a straightforward and unifying approach for the preparation of α-carboxylic acids through nickel-catalyzed radical hydrocarboxylation of both functionalized and unactivated, simple alkenes, at proximal and remote sites. Notably, this operationally simple catalytic reaction exhibits a broad substrate scope, having excellent regio- and chemoselectivities, and is suitable for late-stage carboxylation of bioactive molecules. Preliminary mechanistic investigations showed that a nickel-catalyzed hydrogen atom transfer (Ni-HAT) pathway is in operation, accounting for the site-selective hydrocarboxylation protocol for various alkene substrates.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"45 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424790","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of carbon dioxide and alkenes as feedstocks for the synthesis of carboxylic acids holds great significance in the realm of sustainable chemistry. Nonetheless, achieving selective C−H bond carboxylation of alkenes with broad applicability has long been a challenging task. Herein, we present a straightforward and unifying approach for the preparation of α-carboxylic acids through nickel-catalyzed radical hydrocarboxylation of both functionalized and unactivated, simple alkenes, at proximal and remote sites. Notably, this operationally simple catalytic reaction exhibits a broad substrate scope, having excellent regio- and chemoselectivities, and is suitable for late-stage carboxylation of bioactive molecules. Preliminary mechanistic investigations showed that a nickel-catalyzed hydrogen atom transfer (Ni-HAT) pathway is in operation, accounting for the site-selective hydrocarboxylation protocol for various alkene substrates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Lectin histochemistry of plaques and tangles in Alzheimer's disease
IF 12.7 1区 医学Acta NeuropathologicaPub Date : 1987-03-01 DOI: 10.1007/BF00695495
G. Szumanska, A. W. Vorbrodt, T. I. Mandybur, H. M. Wisniewski
Plaques and tangles and the pathogenesis of Alzheimer's disease.
IF 2 4区 医学Folia neuropathologicaPub Date : 2006-01-01 DOI:
Richard A Armstrong
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Carbon‐Extraction‐Triggered Phase Engineering of Rhodium Nanomaterials for Efficient Electrocatalytic Nitrate Reduction Reaction 3‐Oxabicyclo[3.1.1]heptane as an Isostere for meta‐Benzene Outside Back Cover: Straightforward Formation of Borirenes from Boroles and Dialkynes Inside Front Cover: Chemical Process Development in the Pharmaceutical Industry in Europe: Insights and Perspectives from Industry Scientists Hydrogenation of “Readily Activated Molecule” for Glycine Electrosynthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1