The interface hydrophilic-hydrophobic integration of fluorinated defective graphene towards biomedical applications

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2025-03-20 DOI:10.1039/d5cp00075k
Jiawen Wang, Yi Yu, Huilong Dong, Yujin Ji, Weihua Ning, Youyong Li
{"title":"The interface hydrophilic-hydrophobic integration of fluorinated defective graphene towards biomedical applications","authors":"Jiawen Wang, Yi Yu, Huilong Dong, Yujin Ji, Weihua Ning, Youyong Li","doi":"10.1039/d5cp00075k","DOIUrl":null,"url":null,"abstract":"In biomedical fields, rational design of novel two-dimensional (2D) biomedical nanomaterials aims to precisely manipulate biomolecules, including efficient capture, structural-functional transformation, directional movement, and self-assembly. In this work, we innovatively proposed new graphene nanosheets and selected two representative proteins to explore their binding mechanisms, structural-functional transformation of proteins, and biological effects of the materials. Fluorinated defective graphene (FDG) exhibited highly efficient capture and structural-functional transformation for receptor binding domain (RBD), and we observed its collapse phenomenon in 2D materials firstly. For Main protease (Mpro), FDG achieved a perfect balance between efficient capture, immobilization, and structural disruption. Further studies showed that fluorination on oxygen-containing defects graphene significantly enhanced differences in water distribution, hydrophilicity, hydrophobicity, charge distribution, and hydrogen bond network on the material surface. This allowed amino acids to be confined to specific areas, achieving efficient capture, and directional movement. Additionally, the adsorption behavior and interaction strength of peptides and deoxynucleotides on FDG further validated the possibility of self-assembly. In summary, we highlight FDG as an excellent biomedical material with hydrophilic-hydrophobic integration.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"18 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp00075k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In biomedical fields, rational design of novel two-dimensional (2D) biomedical nanomaterials aims to precisely manipulate biomolecules, including efficient capture, structural-functional transformation, directional movement, and self-assembly. In this work, we innovatively proposed new graphene nanosheets and selected two representative proteins to explore their binding mechanisms, structural-functional transformation of proteins, and biological effects of the materials. Fluorinated defective graphene (FDG) exhibited highly efficient capture and structural-functional transformation for receptor binding domain (RBD), and we observed its collapse phenomenon in 2D materials firstly. For Main protease (Mpro), FDG achieved a perfect balance between efficient capture, immobilization, and structural disruption. Further studies showed that fluorination on oxygen-containing defects graphene significantly enhanced differences in water distribution, hydrophilicity, hydrophobicity, charge distribution, and hydrogen bond network on the material surface. This allowed amino acids to be confined to specific areas, achieving efficient capture, and directional movement. Additionally, the adsorption behavior and interaction strength of peptides and deoxynucleotides on FDG further validated the possibility of self-assembly. In summary, we highlight FDG as an excellent biomedical material with hydrophilic-hydrophobic integration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
The interface hydrophilic-hydrophobic integration of fluorinated defective graphene towards biomedical applications Slide and twist: manipulating polarization in multilayer hexagonal boron–nitride Additive-assisted oriented growth of cobalt oxide : controlled morphology and enhanced supercapacitor performance Assessment of the Piris natural orbital functionals on transition metal dihydrides High initial conductivity and oxidation resistance of copper nanowire films via depositing oxalic acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1