JunHo Lee, Hyeonmuk Kang, JungHyeon Moon, Heechan Kang, GyuSeong Hwang, GeunHyeong Shin, GyungTae Kim, TaeHee Kim, EunAe Cho
{"title":"Enhancement of the cyclic stability of a Li-excess layered oxide through a simple electrode treatment for LiF-coating","authors":"JunHo Lee, Hyeonmuk Kang, JungHyeon Moon, Heechan Kang, GyuSeong Hwang, GeunHyeong Shin, GyungTae Kim, TaeHee Kim, EunAe Cho","doi":"10.1016/j.electacta.2025.145919","DOIUrl":null,"url":null,"abstract":"Lithium-rich layered cathodes (LLCs) are considered to be promising next-generation materials for lithium-ion batteries (LIBs) due to their high specific capacity and energy density. However, their poor cyclability poses a significant challenge for commercial applications. In this study, we introduce a straightforward one-step electrode heat-treatment method involving a lithium fluoride (LiF) coating on conventional LLCs, without the need for additional coating precursors, to enhance the cyclability. During the heat-treatment, lithium residues (LiOH and Li<sub>2</sub>CO<sub>3</sub>) and the PVDF used as a binder react to form an amorphous LiF coating layer (LiF-LLC). Although LiF-LLC initially exhibited a lower capacity compared to pristine LLC (220.2 vs. 246.6 mAh g⁻¹) due to its higher overpotential, it demonstrated superior performance after 100 cycles at 0.2 C. LiF-LLC maintained a discharge capacity of 219.4 mAh g⁻¹ with 95.1 % retention, while pristine LLC showed an outcome of only 164.8 mAh g⁻¹ with 83.4 % retention. A comprehensive analysis revealed that the LiF coating layer effectively passivated the cathode interface, preventing transition metal dissolution and a phase transformation caused by a HF attack. Additionally, LiF-LLC exhibited higher lithium-ion diffusivity, lower interfacial impedance, and enhanced Mn- and O-ion redox activities. These findings demonstrate that the simple electrode heat-treatment significantly improves the cyclic stability of LLCs.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"70 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.145919","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-rich layered cathodes (LLCs) are considered to be promising next-generation materials for lithium-ion batteries (LIBs) due to their high specific capacity and energy density. However, their poor cyclability poses a significant challenge for commercial applications. In this study, we introduce a straightforward one-step electrode heat-treatment method involving a lithium fluoride (LiF) coating on conventional LLCs, without the need for additional coating precursors, to enhance the cyclability. During the heat-treatment, lithium residues (LiOH and Li2CO3) and the PVDF used as a binder react to form an amorphous LiF coating layer (LiF-LLC). Although LiF-LLC initially exhibited a lower capacity compared to pristine LLC (220.2 vs. 246.6 mAh g⁻¹) due to its higher overpotential, it demonstrated superior performance after 100 cycles at 0.2 C. LiF-LLC maintained a discharge capacity of 219.4 mAh g⁻¹ with 95.1 % retention, while pristine LLC showed an outcome of only 164.8 mAh g⁻¹ with 83.4 % retention. A comprehensive analysis revealed that the LiF coating layer effectively passivated the cathode interface, preventing transition metal dissolution and a phase transformation caused by a HF attack. Additionally, LiF-LLC exhibited higher lithium-ion diffusivity, lower interfacial impedance, and enhanced Mn- and O-ion redox activities. These findings demonstrate that the simple electrode heat-treatment significantly improves the cyclic stability of LLCs.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.