Sustainable Waterborne Polyurethane Adhesive With Superstrong Adhesion Performance and Excellent Weatherability from Biomass Lignin and CO2-Based Polyols

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-03-20 DOI:10.1002/adfm.202422605
Rui Li, Lifeng Li, Wenlian Qiu, Dong Yu Zhu, Xueqing Qiu, Rongxian Ou, Baohua Liu, Weifeng Liu
{"title":"Sustainable Waterborne Polyurethane Adhesive With Superstrong Adhesion Performance and Excellent Weatherability from Biomass Lignin and CO2-Based Polyols","authors":"Rui Li,&nbsp;Lifeng Li,&nbsp;Wenlian Qiu,&nbsp;Dong Yu Zhu,&nbsp;Xueqing Qiu,&nbsp;Rongxian Ou,&nbsp;Baohua Liu,&nbsp;Weifeng Liu","doi":"10.1002/adfm.202422605","DOIUrl":null,"url":null,"abstract":"<p>Utilizing biomass and CO<sub>2</sub> to synthesize biodegradable and reusable polymeric materials is critical for addressing the dual challenges of petrochemical resource depletion and environmental pollution. Among emerging alternatives, CO<sub>2</sub>-based polyols (PPC) exhibit exceptional promise in replacing petroleum-based polyols; while, lignin stands as the most abundant aromatic biomass resource. However, integrating these feedstocks to produce high-performance polymeric materials with combined biodegradability, recyclability, and reusability remains technically demanding. In this work, a lignin-based waterborne polyurethane adhesive (LWPU) is developed using PPC and low-molecular-weight lignin (AOH), achieving a high solid content (53.2%) and outstanding overall properties. The incorporation of lignin strengthens hydrogen-bonding networks and increases crosslinking density, thereby enhancing cohesive energy density. The optimized LWPU demonstrates robust adhesion on diverse substrates, with lap shear strengths reaching 14.7 MPa (wood), 10.6 MPa (steel), and 9.0 MPa (aluminum). Notably, it maintains structural integrity under extreme thermal variations (–30 °C to 100 °C), high-humidity (95% ± 5% RH), and prolonged ultraviolet (UV) irradiation conditions. Further, the lignin-reinforced dynamic covalent and hydrogen bonds impart exceptional recyclability and reusability to the adhesives. This methodology establishes a sustainable pathway for designing high-performance bio-adhesives that synergistically utilize biomass and CO₂-derived feedstocks.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 34","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202422605","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing biomass and CO2 to synthesize biodegradable and reusable polymeric materials is critical for addressing the dual challenges of petrochemical resource depletion and environmental pollution. Among emerging alternatives, CO2-based polyols (PPC) exhibit exceptional promise in replacing petroleum-based polyols; while, lignin stands as the most abundant aromatic biomass resource. However, integrating these feedstocks to produce high-performance polymeric materials with combined biodegradability, recyclability, and reusability remains technically demanding. In this work, a lignin-based waterborne polyurethane adhesive (LWPU) is developed using PPC and low-molecular-weight lignin (AOH), achieving a high solid content (53.2%) and outstanding overall properties. The incorporation of lignin strengthens hydrogen-bonding networks and increases crosslinking density, thereby enhancing cohesive energy density. The optimized LWPU demonstrates robust adhesion on diverse substrates, with lap shear strengths reaching 14.7 MPa (wood), 10.6 MPa (steel), and 9.0 MPa (aluminum). Notably, it maintains structural integrity under extreme thermal variations (–30 °C to 100 °C), high-humidity (95% ± 5% RH), and prolonged ultraviolet (UV) irradiation conditions. Further, the lignin-reinforced dynamic covalent and hydrogen bonds impart exceptional recyclability and reusability to the adhesives. This methodology establishes a sustainable pathway for designing high-performance bio-adhesives that synergistically utilize biomass and CO₂-derived feedstocks.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可持续水性聚氨酯胶粘剂,具有超强的粘接性能和优异的耐候性,由生物质木质素和二氧化碳基多元醇制成
利用生物质和二氧化碳合成可生物降解和可重复使用的聚合物材料是解决石油化工资源枯竭和环境污染双重挑战的关键。在新兴的替代品中,二氧化碳基多元醇(PPC)在取代石油基多元醇方面表现出非凡的前景;而木质素是最丰富的芳香生物质资源。然而,整合这些原料来生产具有生物降解性、可回收性和可重复使用性的高性能聚合物材料,在技术上仍然是一项艰巨的任务。本研究以PPC和低分子量木质素(AOH)为原料,研制了木质素基水性聚氨酯胶粘剂(LWPU),其固含量高达53.2%,综合性能优异。木质素的加入加强了氢键网络,增加了交联密度,从而提高了内聚能密度。优化后的LWPU在不同的基材上表现出良好的附着力,其搭接剪切强度达到14.7 MPa(木材),10.6 MPa(钢)和9.0 MPa(铝)。值得注意的是,它在极端热变化(-30°C至100°C)、高湿度(95%±5% RH)和长时间紫外线(UV)照射条件下保持结构完整性。此外,木质素增强的动态共价键和氢键赋予粘合剂卓越的可回收性和可重用性。该方法为设计高性能生物粘合剂建立了可持续的途径,协同利用生物质和二氧化碳衍生原料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Stabilizing Spent LiCoO 2 Through Interface Construction: A Sustainable Route to High‐Performance Cathode Regeneration Polymorph with Triphase Heterojunctions Enhancing Interfacial Stability for Long-Lasting Quasi-Solid-State Lithium Metal Batteries Conductive MOF-Based NiZn Dual Atom Catalyst for Boosted Photoreduction of Diluted CO2: The Effects of Inert Sites Robust and Conductive Polymer Electrolytes via Solvent-Guided Hierarchical Network Formation Uniform SEI design via Solvent Competitions for Stable Anode-Free Zinc Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1