Incorporating Genetic Diversity to Optimize the Plant Conservation Network in the Third Pole

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2025-03-20 DOI:10.1111/gcb.70122
Moses C. Wambulwa, Guang-Fu Zhu, Ya-Huang Luo, Zeng-Yuan Wu, Jim Provan, Marc W. Cadotte, Alistair S. Jump, Francis N. Wachira, Lian-Ming Gao, Ting-Shuang Yi, Jie Cai, Hong Wang, De-Zhu Li, Jie Liu
{"title":"Incorporating Genetic Diversity to Optimize the Plant Conservation Network in the Third Pole","authors":"Moses C. Wambulwa, Guang-Fu Zhu, Ya-Huang Luo, Zeng-Yuan Wu, Jim Provan, Marc W. Cadotte, Alistair S. Jump, Francis N. Wachira, Lian-Ming Gao, Ting-Shuang Yi, Jie Cai, Hong Wang, De-Zhu Li, Jie Liu","doi":"10.1111/gcb.70122","DOIUrl":null,"url":null,"abstract":"Climate change poses a significant threat to the survival of many species. Although protected areas can slow down biodiversity loss, they often lack systematic planning and do not integrate genetic diversity. Genetic diversity is a key prerequisite for species survival and the ability to tolerate new conditions. Using population genetic and distribution data from 96 plant species in the Third Pole (encompassing the Tibetan Plateau and adjacent mountains), we mapped patterns of genetic diversity, projected climate-driven range dynamics and future genetic erosion, and designed an optimal conservation framework for the region. We identified several patches of high haplotype diversity (<i>H</i><sub>D</sub>), with a relatively high number of haplotypes in southeastern Third Pole. Regression models revealed that climate and topography have interacted to shape patterns of genetic diversity, with latitude and precipitation being the best predictors for <i>H</i><sub>D</sub> of cpDNA and nrDNA, respectively. Ecological niche modeling predicted an approximate 43 km northwestward and 86 m upward shift in suitable habitats under future climate scenarios, likely leading to a significant loss of up to 13.19% and 15.49% of cpDNA and nrDNA genetic diversity, respectively. Alarmingly, 71.20% of the newly identified conservation priority areas fall outside of the existing protected areas and planned National Park Clusters. Therefore, we recommend expanding the network by 2.02 × 10<sup>5</sup> km<sup>2</sup> (5.91%) in the Third Pole, increasing the total conserved area to 1.36 × 10<sup>6</sup> km<sup>2</sup> (39.93%) to effectively preserve the evolutionary potential of plants. This study represents an innovative attempt to incorporate genetic diversity into biodiversity conservation efforts.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"34 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/gcb.70122","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change poses a significant threat to the survival of many species. Although protected areas can slow down biodiversity loss, they often lack systematic planning and do not integrate genetic diversity. Genetic diversity is a key prerequisite for species survival and the ability to tolerate new conditions. Using population genetic and distribution data from 96 plant species in the Third Pole (encompassing the Tibetan Plateau and adjacent mountains), we mapped patterns of genetic diversity, projected climate-driven range dynamics and future genetic erosion, and designed an optimal conservation framework for the region. We identified several patches of high haplotype diversity (HD), with a relatively high number of haplotypes in southeastern Third Pole. Regression models revealed that climate and topography have interacted to shape patterns of genetic diversity, with latitude and precipitation being the best predictors for HD of cpDNA and nrDNA, respectively. Ecological niche modeling predicted an approximate 43 km northwestward and 86 m upward shift in suitable habitats under future climate scenarios, likely leading to a significant loss of up to 13.19% and 15.49% of cpDNA and nrDNA genetic diversity, respectively. Alarmingly, 71.20% of the newly identified conservation priority areas fall outside of the existing protected areas and planned National Park Clusters. Therefore, we recommend expanding the network by 2.02 × 105 km2 (5.91%) in the Third Pole, increasing the total conserved area to 1.36 × 106 km2 (39.93%) to effectively preserve the evolutionary potential of plants. This study represents an innovative attempt to incorporate genetic diversity into biodiversity conservation efforts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Reduced Erosion Augments Soil Carbon Storage Under Cover Crops Sulfur's Long Game: 145 Years of Soil Sulfur Speciation in the World's Oldest Agricultural Experiments What Does It Mean to Be(Come) Arctic? Functional and Genetic Traits of Arctic- and Temperate-Adapted Diatoms Incorporating Genetic Diversity to Optimize the Plant Conservation Network in the Third Pole Resilience to Hurricanes Is High in Mangrove Blue Carbon Forests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1