CoFe2O4/Ag Heterocatalysts Grown on Carbonized Wood for Light-Promoted Oxygen Evolution Reaction

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-03-20 DOI:10.1002/smll.202410968
Suyue Luo, Zhenzhong Liu, Xinran Yin, Shuo Zhang, Minghui Guo
{"title":"CoFe2O4/Ag Heterocatalysts Grown on Carbonized Wood for Light-Promoted Oxygen Evolution Reaction","authors":"Suyue Luo, Zhenzhong Liu, Xinran Yin, Shuo Zhang, Minghui Guo","doi":"10.1002/smll.202410968","DOIUrl":null,"url":null,"abstract":"The sluggish reaction kinetics of oxygen evolution reaction (OER) significantly limit the efficiency of electrochemical water splitting (EWS) process, making the development of efficient and stable OER electrocatalysts for sustainable EWS important but still challenging to achieve. Herein, a light-assisted improved design of low-budget carbonized wood (CW) with outstanding OER performance is developed by firmly growing CoFe<sub>2</sub>O<sub>4</sub> nanorods and Ag nanoparticles on the CW channels to form self-supporting electrode (CoFe<sub>2</sub>O<sub>4</sub>/Ag-CW). The coordination of active CoFe<sub>2</sub>O<sub>4</sub>/Ag and porous CW framework results in substantial effective interfaces and abundant electrochemical active sites, and accelerated electrolyte diffusion, electron transfer, and oxygen escaping. Electrochemical measurements and density functional theory calculations suggest the presence of dual microparticle synergies, conducive to optimizing the electronic structure of CoFe<sub>2</sub>O<sub>4</sub>/Ag-CW and lowering the energy barrier of O-H bond breaking in H<sub>2</sub>O for remarkably enhanced OER activity. Under light field assistance, CoFe<sub>2</sub>O<sub>4</sub>/Ag-CW exhibits excellent photothermal effect and carrier separation efficiency with ultralow overpotential of 258 mV and long-term stability at 100 mA cm<sup>−2</sup>. The photothermal effect and the generation of photogenerated carriers enhance OER dynamics and charge transfer efficiency, leading to improved OER performance under light exposure. Overall, the proposed strategy looks promising for efficient and low-cost oxygen generation.","PeriodicalId":228,"journal":{"name":"Small","volume":"21 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410968","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The sluggish reaction kinetics of oxygen evolution reaction (OER) significantly limit the efficiency of electrochemical water splitting (EWS) process, making the development of efficient and stable OER electrocatalysts for sustainable EWS important but still challenging to achieve. Herein, a light-assisted improved design of low-budget carbonized wood (CW) with outstanding OER performance is developed by firmly growing CoFe2O4 nanorods and Ag nanoparticles on the CW channels to form self-supporting electrode (CoFe2O4/Ag-CW). The coordination of active CoFe2O4/Ag and porous CW framework results in substantial effective interfaces and abundant electrochemical active sites, and accelerated electrolyte diffusion, electron transfer, and oxygen escaping. Electrochemical measurements and density functional theory calculations suggest the presence of dual microparticle synergies, conducive to optimizing the electronic structure of CoFe2O4/Ag-CW and lowering the energy barrier of O-H bond breaking in H2O for remarkably enhanced OER activity. Under light field assistance, CoFe2O4/Ag-CW exhibits excellent photothermal effect and carrier separation efficiency with ultralow overpotential of 258 mV and long-term stability at 100 mA cm−2. The photothermal effect and the generation of photogenerated carriers enhance OER dynamics and charge transfer efficiency, leading to improved OER performance under light exposure. Overall, the proposed strategy looks promising for efficient and low-cost oxygen generation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
EMpowerment of PArents in THe Intensive Care Questionnaire: Translation and Validation in Italian PICUs
IF 4.1 2区 医学Pediatric Critical Care MedicinePub Date : 2017-02-01 DOI: 10.1097/PCC.0000000000001031
A. Wolfler, A. Giannini, Martina Finistrella, I. Salvo, E. Calderini, G. Frasson, I. Dall’Oglio, Michela Di Furia, Rossella Iuzzolino, M. Musicco, J. Latour
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Feasibility of Active and Durable Lattice Oxygen-Mediated Oxygen Evolution Electrocatalysts in Proton Exchange Membrane Water Electrolyzers Through d0 Metal Ion Incorporation Multi-Component Intermetallic Nanocrystals: a Promising Frontier in Advanced Electrocatalysis SERS Enhancement of CoSe2 Nanocages via Biphase Junction Strategy Alloying Strategy Balances the Adsorption-Reduction-Oxidation Process of Sulfur Species Across Wide Temperature Ranges 3D Interlaced Biomimetic Wedge Structures for Efficient Fog Harvesting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1