Quantum circuit optimization with AlphaTensor

IF 23.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Nature Machine Intelligence Pub Date : 2025-03-20 DOI:10.1038/s42256-025-01001-1
Francisco J. R. Ruiz, Tuomas Laakkonen, Johannes Bausch, Matej Balog, Mohammadamin Barekatain, Francisco J. H. Heras, Alexander Novikov, Nathan Fitzpatrick, Bernardino Romera-Paredes, John van de Wetering, Alhussein Fawzi, Konstantinos Meichanetzidis, Pushmeet Kohli
{"title":"Quantum circuit optimization with AlphaTensor","authors":"Francisco J. R. Ruiz, Tuomas Laakkonen, Johannes Bausch, Matej Balog, Mohammadamin Barekatain, Francisco J. H. Heras, Alexander Novikov, Nathan Fitzpatrick, Bernardino Romera-Paredes, John van de Wetering, Alhussein Fawzi, Konstantinos Meichanetzidis, Pushmeet Kohli","doi":"10.1038/s42256-025-01001-1","DOIUrl":null,"url":null,"abstract":"A key challenge in realizing fault-tolerant quantum computers is circuit optimization. Focusing on the most expensive gates in fault-tolerant quantum computation (namely, the T gates), we address the problem of T-count optimization, that is, minimizing the number of T gates needed to implement a given circuit. To achieve this, we develop AlphaTensor-Quantum, a method based on deep reinforcement learning that exploits the relationship between optimizing the T-count and tensor decomposition. Unlike existing methods for T-count optimization, AlphaTensor-Quantum can incorporate domain-specific knowledge about quantum computation and leverage gadgets, which substantially reduces the T-count of the optimized circuits. AlphaTensor-Quantum outperforms the existing methods for T-count optimization on a set of arithmetic benchmarks (even when compared without using gadgets). Remarkably, it discovers an efficient algorithm akin to Karatsuba’s method for multiplication in finite fields. AlphaTensor-Quantum also finds the best human-designed solutions for relevant arithmetic computations used in Shor’s algorithm and for quantum chemistry simulation, thus demonstrating that it can save hundreds of hours of research by optimizing relevant quantum circuits in a fully automated way. Ruiz and colleagues introduce AlphaTensor-Quantum, a deep reinforcement learning method for optimizing quantum circuits. It outperforms existing methods and is capable of finding the best human-designed solutions for relevant quantum computations in a fully automated way.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"7 3","pages":"374-385"},"PeriodicalIF":23.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42256-025-01001-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-025-01001-1","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A key challenge in realizing fault-tolerant quantum computers is circuit optimization. Focusing on the most expensive gates in fault-tolerant quantum computation (namely, the T gates), we address the problem of T-count optimization, that is, minimizing the number of T gates needed to implement a given circuit. To achieve this, we develop AlphaTensor-Quantum, a method based on deep reinforcement learning that exploits the relationship between optimizing the T-count and tensor decomposition. Unlike existing methods for T-count optimization, AlphaTensor-Quantum can incorporate domain-specific knowledge about quantum computation and leverage gadgets, which substantially reduces the T-count of the optimized circuits. AlphaTensor-Quantum outperforms the existing methods for T-count optimization on a set of arithmetic benchmarks (even when compared without using gadgets). Remarkably, it discovers an efficient algorithm akin to Karatsuba’s method for multiplication in finite fields. AlphaTensor-Quantum also finds the best human-designed solutions for relevant arithmetic computations used in Shor’s algorithm and for quantum chemistry simulation, thus demonstrating that it can save hundreds of hours of research by optimizing relevant quantum circuits in a fully automated way. Ruiz and colleagues introduce AlphaTensor-Quantum, a deep reinforcement learning method for optimizing quantum circuits. It outperforms existing methods and is capable of finding the best human-designed solutions for relevant quantum computations in a fully automated way.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于alphatsensor的量子电路优化
实现容错量子计算机的一个关键挑战是电路优化。专注于容错量子计算中最昂贵的门(即T门),我们解决了T计数优化问题,即最小化实现给定电路所需的T门数量。为了实现这一目标,我们开发了alphatsensor - quantum,这是一种基于深度强化学习的方法,利用了优化t计数和张量分解之间的关系。与现有的t计数优化方法不同,alphatsensor - quantum可以结合有关量子计算的领域特定知识并利用小工具,从而大大减少了优化电路的t计数。alphatsensor - quantum在一组算术基准上优于现有的t计数优化方法(即使在不使用gadget的情况下进行比较)。值得注意的是,它发现了一种有效的算法,类似于Karatsuba在有限域中的乘法方法。alphatsensor - quantum还为肖尔算法中使用的相关算术计算和量子化学模拟找到了最佳的人为设计解决方案,从而证明它可以通过完全自动化的方式优化相关量子电路,节省数百小时的研究时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
期刊最新文献
Learning cell dynamics with neural differential equations A psychometric framework for evaluating and shaping personality traits in large language models Multimodal out-of-distribution individual uncertainty quantification enhances binding affinity prediction for polypharmacology Network-aware self-supervised learning enables high-content phenotypic screening for genetic modifiers of neuronal activity dynamics Solving finite element methods with spiking networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1