Enhancing radiative heat transfer with meta-atomic displacement

IF 6.6 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanophotonics Pub Date : 2025-03-19 DOI:10.1515/nanoph-2024-0729
Cheng-Long Zhou, Shuihua Yang, Yang Huang, Yong Zhang, Hong-Liang Yi, Mauro Antezza, Cheng-Wei Qiu
{"title":"Enhancing radiative heat transfer with meta-atomic displacement","authors":"Cheng-Long Zhou, Shuihua Yang, Yang Huang, Yong Zhang, Hong-Liang Yi, Mauro Antezza, Cheng-Wei Qiu","doi":"10.1515/nanoph-2024-0729","DOIUrl":null,"url":null,"abstract":"Controlling and manipulating radiative heat transfer remains a pivotal challenge in both scientific inquiry and technological advancement, traditionally tackled through the precise geometric design of metastructures. However, geometrical optimization cannot break the inherent shackles of local modes within individual meta-atoms, which hinders sustained progress in radiative heat transfer. Here, we propose a comprehensive strategy based on interatomic displacement to achieve superior heat transfer performance while obviating the need for increasingly complex structural designs. This meta-atomic displacement strategy enables a shift from quasi-isolated localized resonances to extended nonlocal resonant modes induced by strong interactions among neighboring meta-atoms, resulting in a radiative heat conductance that surpasses other previously reported geometrical structures. Furthermore, this meta-atomic displacement strategy can be seamlessly applied to various metastructures, offering significant implications for advancing thermal science and next-generation energy devices.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"92 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0729","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling and manipulating radiative heat transfer remains a pivotal challenge in both scientific inquiry and technological advancement, traditionally tackled through the precise geometric design of metastructures. However, geometrical optimization cannot break the inherent shackles of local modes within individual meta-atoms, which hinders sustained progress in radiative heat transfer. Here, we propose a comprehensive strategy based on interatomic displacement to achieve superior heat transfer performance while obviating the need for increasingly complex structural designs. This meta-atomic displacement strategy enables a shift from quasi-isolated localized resonances to extended nonlocal resonant modes induced by strong interactions among neighboring meta-atoms, resulting in a radiative heat conductance that surpasses other previously reported geometrical structures. Furthermore, this meta-atomic displacement strategy can be seamlessly applied to various metastructures, offering significant implications for advancing thermal science and next-generation energy devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用元原子位移增强辐射传热
控制和操纵辐射传热仍然是科学探究和技术进步的关键挑战,传统上通过元结构的精确几何设计来解决。然而,几何优化不能打破单个元原子内部局部模式的固有束缚,这阻碍了辐射传热的持续发展。在这里,我们提出了一种基于原子间位移的综合策略,以实现卓越的传热性能,同时避免了对日益复杂的结构设计的需要。这种元原子位移策略能够从准孤立的局部共振转变为由邻近元原子之间的强相互作用引起的扩展非局部共振模式,从而产生优于其他先前报道的几何结构的辐射热传导。此外,这种元原子位移策略可以无缝应用于各种元结构,为推进热科学和下一代能源设备提供了重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
期刊最新文献
Light-driven micro/nanobots Generalized non-Hermitian Hamiltonian for guided resonances in photonic crystal slabs Demonstration of multiple-wavelength-band photonic integrated circuits using a silicon and silicon nitride 2.5D integration method Diffusion model-based inverse design of photonic crystals for customized refraction Scaling-dependent tunability of spin-driven photocurrents in magnetic metamaterials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1