{"title":"Enhancing radiative heat transfer with meta-atomic displacement","authors":"Cheng-Long Zhou, Shuihua Yang, Yang Huang, Yong Zhang, Hong-Liang Yi, Mauro Antezza, Cheng-Wei Qiu","doi":"10.1515/nanoph-2024-0729","DOIUrl":null,"url":null,"abstract":"Controlling and manipulating radiative heat transfer remains a pivotal challenge in both scientific inquiry and technological advancement, traditionally tackled through the precise geometric design of metastructures. However, geometrical optimization cannot break the inherent shackles of local modes within individual meta-atoms, which hinders sustained progress in radiative heat transfer. Here, we propose a comprehensive strategy based on interatomic displacement to achieve superior heat transfer performance while obviating the need for increasingly complex structural designs. This meta-atomic displacement strategy enables a shift from quasi-isolated localized resonances to extended nonlocal resonant modes induced by strong interactions among neighboring meta-atoms, resulting in a radiative heat conductance that surpasses other previously reported geometrical structures. Furthermore, this meta-atomic displacement strategy can be seamlessly applied to various metastructures, offering significant implications for advancing thermal science and next-generation energy devices.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"92 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0729","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling and manipulating radiative heat transfer remains a pivotal challenge in both scientific inquiry and technological advancement, traditionally tackled through the precise geometric design of metastructures. However, geometrical optimization cannot break the inherent shackles of local modes within individual meta-atoms, which hinders sustained progress in radiative heat transfer. Here, we propose a comprehensive strategy based on interatomic displacement to achieve superior heat transfer performance while obviating the need for increasingly complex structural designs. This meta-atomic displacement strategy enables a shift from quasi-isolated localized resonances to extended nonlocal resonant modes induced by strong interactions among neighboring meta-atoms, resulting in a radiative heat conductance that surpasses other previously reported geometrical structures. Furthermore, this meta-atomic displacement strategy can be seamlessly applied to various metastructures, offering significant implications for advancing thermal science and next-generation energy devices.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.