The dynamical history of the Kepler-221 planet system

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2025-03-19 DOI:10.1051/0004-6361/202452005
Tian Yi, Chris W. Ormel, Shuo Huang, Antoine C. Petit
{"title":"The dynamical history of the Kepler-221 planet system","authors":"Tian Yi, Chris W. Ormel, Shuo Huang, Antoine C. Petit","doi":"10.1051/0004-6361/202452005","DOIUrl":null,"url":null,"abstract":"Kepler-221 is a G-type star hosting four planets. In this system, planets b, c, and e are in (or near) a 6:3:1 three-body resonance even though the planets’ period ratios show significant departures from exact two-body commensurability. Importantly, the intermediate planet d is not part of the resonance chain. To reach this resonance configuration, we propose a scenario in which there were originally five planets in the system in a chain of first-order resonances. After disk dispersal, the resonance chain became unstable, and two planets quickly merged to become the current planet d. In addition, the (b, c, e) three-body resonance was re-established. We ran <i>N<i/> body simulations using REBOUND to investigate the parameter space under which this scenario can operate. We find that our envisioned scenario is possible when certain conditions are met. First, the reformation of the three-body resonance after planet merging requires convergent migration between planets b and c. Second, as has been previously pointed out, an efficient damping mechanism must operate to power the expansion of the (b, c, e) system. We find that planet d plays a crucial role during the orbital expansion phase due to destabilizing encounters of a three-body resonance between c, d, and e. A successful orbital expansion phase puts constraints on the planet properties in the Kepler-221 system including the planet mass ratios and the tidal quality factors for the planets. Our model can also be applied to other planet systems in resonance, such as Kepler-402 and K2-138.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"67 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452005","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Kepler-221 is a G-type star hosting four planets. In this system, planets b, c, and e are in (or near) a 6:3:1 three-body resonance even though the planets’ period ratios show significant departures from exact two-body commensurability. Importantly, the intermediate planet d is not part of the resonance chain. To reach this resonance configuration, we propose a scenario in which there were originally five planets in the system in a chain of first-order resonances. After disk dispersal, the resonance chain became unstable, and two planets quickly merged to become the current planet d. In addition, the (b, c, e) three-body resonance was re-established. We ran N body simulations using REBOUND to investigate the parameter space under which this scenario can operate. We find that our envisioned scenario is possible when certain conditions are met. First, the reformation of the three-body resonance after planet merging requires convergent migration between planets b and c. Second, as has been previously pointed out, an efficient damping mechanism must operate to power the expansion of the (b, c, e) system. We find that planet d plays a crucial role during the orbital expansion phase due to destabilizing encounters of a three-body resonance between c, d, and e. A successful orbital expansion phase puts constraints on the planet properties in the Kepler-221 system including the planet mass ratios and the tidal quality factors for the planets. Our model can also be applied to other planet systems in resonance, such as Kepler-402 and K2-138.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Prevalence and severity of gastro-intestinal parasites in buffalo calves at Sylhet division of Bangladesh.
IF 0 Journal of Parasitic DiseasesPub Date : 2021-09-01 DOI: 10.1007/s12639-020-01339-w
Iffat Ara, Juned Ahmed, Prantho Malakar Dipta, Shampa Deb Nath, Taslima Akter, Mahfuz Rahman Adnan, Bishojit Deb, Shahrul Alam, Q M Monzur Kader Chowdhury, Asmaul Husna, Md Mahfujur Rahman, Md Masudur Rahman
Prevalence of Gastro-intestinal Parasitic Infestation of Pegion at Sylhet District in Bangladesh
IF 0 Asian Journal of Animal SciencesPub Date : 2017-06-15 DOI: 10.3923/AJAS.2017.189.193
T. Islam, S. Ahmad, Mamunur Rahman, A. Hossain, Mahfuz Rahman Adnan, Mustaq Ahmad, M. H. Talha, Matiur Rahman
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
Rediscovering the Milky Way with an orbit superposition approach and APOGEE data A new pulsating neutron star in the ultraluminous X-ray source NGC 4559 X7? Calibrating chemical mixing induced by internal gravity waves based on hydrodynamical simulations Turbulent fragmentation as the primary driver of core formation in Polaris Flare and Lupus I⋆ No robust statistical evidence for a population of water worlds in a 2025 sample of planets orbiting M stars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1