Samuel Hamard, Sophie Planchenault, Romain Walcker, Anna Sytiuk, Marie Le Geay, Martin Küttim, Ellen Dorrepaal, Mariusz Lamentowicz, Owen L. Petchey, Bjorn J. M. Robroek, Eeva-Stiina Tuittila, Maialen Barret, Régis Céréghino, Frédéric Delarue, Jessica Ferriol, Tristan Lafont Rapnouil, Joséphine Leflaive, Gaël Le Roux, Vincent E. J. Jassey
{"title":"Microbial photosynthesis mitigates carbon loss from northern peatlands under warming","authors":"Samuel Hamard, Sophie Planchenault, Romain Walcker, Anna Sytiuk, Marie Le Geay, Martin Küttim, Ellen Dorrepaal, Mariusz Lamentowicz, Owen L. Petchey, Bjorn J. M. Robroek, Eeva-Stiina Tuittila, Maialen Barret, Régis Céréghino, Frédéric Delarue, Jessica Ferriol, Tristan Lafont Rapnouil, Joséphine Leflaive, Gaël Le Roux, Vincent E. J. Jassey","doi":"10.1038/s41558-025-02271-8","DOIUrl":null,"url":null,"abstract":"<p>The future of the northern peatland carbon (C) sink is uncertain as the effects of warming on microbial metabolisms are unclear. While increased microbial CO<sub>2</sub> emissions are expected under warming, the response of microbial photosynthesis remains unknown, complicating predictions of net microbial effects on peatland carbon emissions. Here, using a continental-scale experimental study, we show that warming amplifies microbial photosynthesis by 3.4 mgC m<sup>−2</sup> h<sup>−1</sup> per 1 °C increase. By 2100, this increase translates to a gain of 51.1 Tg of carbon per year from the northern peatland area under the pessimistic SSP 5-8.5 climatic change scenario, offsetting ~14% of projected heterotrophic CO<sub>2</sub> emissions in northern peatlands. By linking field and microcosm experiments, we further show that enhanced microbial photosynthesis accelerates peatland CO<sub>2</sub> uptake as photosynthetic microbial-C subsidies stimulate nutrient mineralization. These results underscore the importance of photosynthetic microbes for mitigating carbon emissions and supporting long-term carbon storage in peatlands.</p>","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"21 1","pages":""},"PeriodicalIF":29.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41558-025-02271-8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The future of the northern peatland carbon (C) sink is uncertain as the effects of warming on microbial metabolisms are unclear. While increased microbial CO2 emissions are expected under warming, the response of microbial photosynthesis remains unknown, complicating predictions of net microbial effects on peatland carbon emissions. Here, using a continental-scale experimental study, we show that warming amplifies microbial photosynthesis by 3.4 mgC m−2 h−1 per 1 °C increase. By 2100, this increase translates to a gain of 51.1 Tg of carbon per year from the northern peatland area under the pessimistic SSP 5-8.5 climatic change scenario, offsetting ~14% of projected heterotrophic CO2 emissions in northern peatlands. By linking field and microcosm experiments, we further show that enhanced microbial photosynthesis accelerates peatland CO2 uptake as photosynthetic microbial-C subsidies stimulate nutrient mineralization. These results underscore the importance of photosynthetic microbes for mitigating carbon emissions and supporting long-term carbon storage in peatlands.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.